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Abstract 
 
 This paper discusses the problem of a viscous liquid flowing down an inclined 

plane.  Such fluids are known to exhibit a fingering-type instability, in which the contact 

line of the fluid becomes distorted in a wavy pattern.  This effect is familiar to anyone 

who has seen the flow of fluid down a wall, in which a uniform contact line quickly turns 

into a wavy pattern, with very rapidly moving “fingers” and slowly moving spaces 

between them.  A theoretical treatment of viscous fluid flow will be developed, starting 

from the Navier-Stokes equations to derive an approximation for thin fluid films (the 

lubrication approximation), and an analysis of flow stability to perturbations will be 

carried out.  Comparisons of the theoretical results with numerical simulations and 

experimental trials will be made.  In particular, the growth rate in length and the 

transverse width of the fingers will be analyzed using theoretical, numerical, and 

experimental techniques, and the values derived from each compared. 

 

 

Introduction to the Theory 
  
 The behavior of a viscous fluid may be analyzed theoretically by means of the 

Navier-Stokes equations: 

 

 Du/Dt = (u••••∇∇∇∇ )u + ∂u/∂t = -∇∇∇∇ P/ρ + (µ/ρ)∇∇∇∇ 2u + g     (1) 
 

Here u = (ux , uy,, uz) = (v , w) is the fluid velocity, P the fluid pressure, µ the 

viscosity, ρ the density, and g the gravitational acceleration.  The term on the left 

represents the fluid’s inertia, while the terms on the right represent the pressure 

gradient, viscosity, and gravity, respectively.   This equation will be simplified to develop 

the thin film lubrication approximation for our theoretical analysis. 



Our coordinate system will be set up as shown in Figure 1 below.  The plane is 

inclined to the horizontal at an angle α, with flow in the x direction.  The y axis is in the 

plane but perpendicular to the flow direction, and the z axis is normal to the plane.  Thus 

the gravitational term may be written as g = g*[isin(α) – kcos(α)], where i and k are the 

unit normal vectors in the x and z direction, respectively. 

  

 

Derivation of the Lubrication Approximation 
 

First we will assume that the flow has a small Reynolds number (i.e., very 

viscous and/or slow, Re = ULρ/µ << 1, where U is a typical velocity and L a typical 

length scale), so that the inertia term may be discarded, and the right side of (1) set 

equal to zero.  In addition, we assume that the in-plane derivatives of the in-plane 

velocity of the thin film are smaller than the derivative normal to the plane: ∂2|v|/∂x2, 



∂2|v|/∂y2 << ∂2|v|/∂z2.  This directly implies that the normal component of velocity is 

smaller than the in-plane component of velocity, i.e. w << |v|.  Therefore, we may split 

(1) componentwise: 

 

  µ ∂2v/∂z2 + ρ g sin(α)i - ∇∇∇∇ 2P = 0  (x and y components) 

           (2) 
 ∂P/∂z + ρ g cos(α) = 0   (z component)  

 

where ∇∇∇∇ 2 represents the gradient taken only in the x and y directions.  From integration 

of the z component we find that P = C(x,y) - ρ g z cos(α).   

 We denote the height of the film by h(x,y), and we note that the pressure at the 

surface of the fluid must satisfy the Laplace-Young boundary condition: P(h) = P0 - γ κ, 

where κ represents the curvature of the surface at the point (x,y,h), and γ is the surface 

tension of the fluid.  With this boundary condition, we can solve for the constant of 

integration C(x,y) above, and we find that  

 

P(z) = P0 - γ κ  - ρ g (z-h)cos(α).           (3) 
  

If we integrate the x-y component of Equation (2) twice, using the expression just found 

for P, we find v = 1/µ∇∇∇∇ 2P(z2/2) + Az + B - ρ g (z2/2µ) sin(α)i.  If we assume a no-slip 

boundary condition at the fluid-surface interface (z = 0), we find A = -(h/µ)∇∇∇∇ 2P + ρ g 

(z2/2hµ) sin(α)i.  Further, we may average the in-plane velocity v over the thickness of 

the film (by integrating in the z direction and dividing by h), and find 

 

 <v> = -(h2/3µ) [∇∇∇∇ P - ρ g sin(α)i]      (4) 
  

 Next, using the incompressibility of the fluid (i.e. ∇• (hv) + ∂h/∂t = Dh/Dt = 0), and 

making the approximation κ ≈ ∇ 2h, and we find that 

 

 3µ ∂h/∂t + ∇• [γ h3 ∇∇∇∇∇ 2h] – ρ g cos(α)∇• [h3∇∇∇∇ h] + ρ g sin(α)∂h3/∂x = 0 (5) 



 
Equation (5) is known as the thin film equation and will be the differential 

equation used for the rest of this analysis.  The second term represents capillarity of the 

fluid, and the last two terms represent gravity.  Again, h is the fluid thickness at point 

(x,y), with α the inclination angle of the plane, g the gravitational acceleration, and γ, µ, 

and ρ the fluid surface tension, viscosity and density, respectively. 

 As a final step, we will nondimensionalize this equation to simplify the theoretical 

analysis.   

 

1. Far from the contact line, the film has a constant thickness of hc, so we will 

normalize the film thickness by this amount:  z = z/hc.  In reality, the film will 

gradually thin far behind the contact line, but we assume that the thickness far 

behind the contact line will be a constant.  As further justification for this assumption, 

the linear analysis we will perform will be used only for very short flow times and 

small finger amplitudes, where the thinning effect will be less pronounced. 

2. We will use a “natural” length scale xc in the plane, and normalize x and y by this 

amount: x = x/xc, y = y/xc. 

3. We define U to be a typical in-plane velocity, and normalize time by t = t/tc, with tc = 

xc/U. 

4. Further, we define the capillary number:  Ca = µU/γ. 

5. Finally, we incorporate all the fluid constants and the plane inclination into a function 

D(α) = (3Ca)1/3*cot(α). 

 

With these normalizations, Equation (5) is placed in the much simpler 

nondimensional form 

 

 ∂h/∂t + ∇• [h3 ∇∇∇∇∇ 2h] – D ∇• [h3∇∇∇∇ h] + ∂h3/∂x = 0    (6) 
 

At this point, we are ready to begin our analysis of the lubrication approximation.  

However, it should be noted that the no-slip boundary condition at the fluid-surface 

interface is rather strict, and in fact allows for no fluid flow at all.  In reality, there is some 



amount of slip, since we know that fluids do in fact flow.  For our theoretical 

development, to get around the no-slip condition we assume there is a very thin film in 

front of the contact line.  This precursor film, of normalized thickness b << 1, allows fluid 

to flow without losing the important no-slip boundary condition. 

 

Solution in One Dimension 
 

 Next we wish to try and solve Equation (6).  First, we will make a simplifying 

assumption, and make the fluid thickness uniform across the plane, so that h depends 

only on the x coordinate.  In this manner, Equation (6) simplifies to 

 

 ht + [h3 hxxx]x – D* [h3hx]x + h3
xxx= 0      (7) 

 h(0) = 1 (far behind contact line),  h(Lx) = b (at contact line)    

 hxxx(0) = hxxx(Lx) = 0         

  

The above boundary-value problem has a solution which looks roughly like Figure 2 

below:  

 



The size of the bump near the contact line will be a function of the plane’s inclination 

angle.  Note that far behind the contact line the profile is flat, with a normalized height of 

1, and the thickness at and beyond the contact line is a flat value of b. 

 This solution looks something like a traveling wave.  Assigning velocity U to the 

wavefront, and replacing x with x = x –Ut, we can integrate Equation (7) once to obtain a 

solution of the form  

 

h3*[1 + hxxx] – U*h – D*h3*hx = d      (8) 
 

where V and d are constants of integration.  Plugging in the boundary conditions in (7), 

we find U = 1 + b + b2 = (1-b3)/(1-b), and d = -b/(1+b). 

 

  

Extending to Two Dimensions 
 

The above is a solution (8) for h(x), where the film thickness depends only on x.  

Of course, we are interested in fingering instabilities in the y direction, so this solution is 

of limited interest. 

To include y behavior in the solution, we let 

 

h(x,y,t) = h0(x) + ε*exp(iqy)*G(x,t)      (9) 
 

Here, h0 is the solution depending only on x found in Equation (8), and we are 

writing the y dependence of h as a Fourier sum of oscillations of spatial frequency q, 

where the wavelength of the disturbances is given by λ = 2π/q.  The value ε is assumed 

to be small and represents the amplitude of the oscillation.  In addition, there is a 

function G(x,t), which is a function of both time and the x coordinate; what G looks like 

determines the stability of the profile to small perturbations of amplitude ε*G and y 

spatial frequency q.  In particular, we will assume G has the form G(x,t) = G(x)*exp(β*t).  

We will study β as a function of disturbance frequency q, to see which wavelengths of 

fingers are stable or unstable, and how quickly they can be expected to grow or decay.   



 

The details of the stability analysis are presented in Appendix A; what will follow 

is a brief treatment of the analysis, with details available in the Appendix. 

 

 

Linear Stability Analysis 
 
 The first step in the linear stability analysis is to expand Equation (5) fully, with 

only terms of up to O(ε) kept (higher orders are discarded since ε is assumed small).  

The terms of order ε are shown in Equation 14 in the Appendix, reproduced below: 

             
 The next step is to take the Fourier transform in y of Equation 14.  The result is 

given as Equation 23 in the Appendix.  This result holds for various inclination angles 

(varying values of D(α)), and with the value of U set to 1: 

 Next, we wish to expand the growth rate β  in powers of q.  Noting that G is an 

even function of q, we can expand β and G in even powers of q: 

 β(q) = β0 + β1q2 + β2q4 + … 

  G(x) = B0*(g0(x) + q2g1(x) + q4g2(x) + …)     (10) 
  

 After doing this, we substitute the expanded G(x,t) into Equation 23 in the 
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Appendix, and we derive Equation 33 (using terms of up to order 4 in q):   

 

We note that Equation 33 has many terms of varying even powers of q set equal to 

zero; in order for equality to hold for all q, the terms of each power in q must individually 

add up to zero.  Thus, we can separate terms of varying orders in q; the zeroth order 

terms are given in Equation 34, and second order terms in Equation 37. 

 Looking at the zeroth order terms in Equation 34: 

 

we can find that β0 = 0.  From Equation 37: 

 

 we derive an integral representation for β1 shown in Equation 43: 

 

This type of analysis can be carried to higher orders to find β2 and higher powers, 

although it gets enormously complicated.  

 Instead of seeking analytic results for these higher powers of β, we will try to find 

numerical results for β, using our earlier result for h0.  When we do this, we find that β = 

0 at q = 0, increases to some maximum value (where the disturbance grows most 

quickly and is thus the most unstable mode), then decreases to zero and negative 

values.  The decrease in β at high q is due to the effects of surface tension, which tends 

to wipe out very small oscillations of high spatial frequency (and thus large surface 

curvatures).  The most unstable wavelength q and the value of β at this q is a function of 

the artificial precursor film thickness b, although the dependence on b of qunstable is 

rather weak.  In addition, the most unstable mode is an implicit function of the fluid 

parameters and plane inclination (all contained in the function D(α)), affecting the 
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solution by changing the shape of the 1-dimensional profile ho(x); all terms explicitly 

containing D(α) cancel one another out, as shown in the Appendix. 

 A typical numerical result for β(q) is shown below in Figure 3.  It was derived 

numerically by summing the first three terms in the expansion for β, and presented in 

Ref. 1 by Bertozzi and Brenner.  While the results depend on the assumed value of b, 

and depend on D(α), the general result is that there is some q for which the instability is 

maximized. For large q, surface tension represented in the quartic term, with β2 < 0 

becomes dominant.  In addition, for large D (small inclination angles), there is no q for 

maximum instability; for these D values the flow will be stable with respect to oscillations 

in the y-direction (at least to this first linear approximation).  

 In practice it will turn out that observed fingering instabilities will be most 

prominent for q ≈ qunstable, exhibiting exponential growth with growth rate β, at least when 

Figure 3:  Numerical results for β(q), from Bertozzi and Brenner [3]. 

 

the fingers are small, so that the above linear analysis (including a dropping of all terms 

of higher orders in ε) is valid.  The following sections present numerical and 

experimental results concerning these fingering instabilities. 

 

 



Numerical Analysis 
 
 

δh/δt  +  [ h3hxxx]x - D[h3hx] x + (h3) x = 0 

 
To solve this partial differential equation the following methods were used: 

 

– Finite differences used to solve in space 

– Explicit method:  Forward Euler used to solve in time 

 

The simplified algorithm used to solve this equation is as follows: 

  

    FFoorr  tt  ==  00,,  ttoo  TT  

    {{          

              FFoorr  ii  ==  11,,  ttoo  II  ==  NN  --11  

        hh[[ii]]  ==  hh[[ii]]  ++  ddeellttaa__tt  **  GG((ii))  

                tt  ==  tt  ++  ddeellttaa__tt        

          }} 

 

Where G(i)  is equal to:    -A(i) + D*B(i) – C(i): 

 

Where the following terms are equal to: 
 
A(i) =  [ a( h[i], h[i+1])*( h[i+2] – 3* h[i+1]+ 3*h[i] – h[i-1] ) - a( h[i-1], h[i])*(h[i+1]  

   – 3*h[i]+ 3* h[i-1] - h[i-2] ) ]  / (delta_x4) 

 

a( h[a], h[b]) = ( h[a]3 + h[b]3 ) / 2 

 

B(i) = [a( h[i], h[i+1])*( h[i+2] - h[i] ) - a( h[i-2], h[i-1])*( h[i] - h[i-2] ) ]  / (4*delta_x2) 

 



C(i) = [ ( h[i+1]) 3 – (h[i-1]) 3 ]  /  (2*delta_x) 

 

D = (3*Ca)1/3cot(α)  

 



 

Program Listing: 
 
#include <condefs.h> 
#include <iostream.h> 
#include <fstream.h> 
 
#pragma hdrstop 
 
 
const int N= 200;   // Division of space into 50 equally sized blocks 
const long double N_d = 200; 
 
// Time Step 
const long double delta_t = 0.000005;//*( (long double)( 1.00 /16.00 )); 
 
const int N_time_steps = 1000000;       // number of time steps 
 
const int output = 10000;   // interval for every output 
 
const long double delta_x = 20/(N_d - 1);  // space between points 
 
const long double precursor = 0.1; 
 
long double H[N],H_TEMP[N],K1[N],K2[N]; // each index is a position; 
 
bool Log = false; 
 
 
//--------------------------------------------------------------------------- 
//--------------------------------------------------------------------------- 
 
// Forward Reference for functions 
 
 
// Set boundary conditions 
void boundary(); 
 
 
// Set initial conditoins 
void initial_condition(); 
 
 
long double G( const long double H[], int i); 
 
// first term:  4'th order term 
long double A( const long double H[], int i); 
 
// part of the second term: 2'nd order term 
long double B( const long double H[], int i); 
 
 
// third term:  1's order term 
long double C( const long double H[], int i); 
 
 
// part of the second term: coefficient 
long double D(); 
 
 
// part of the second term: 
long double I( const long double H[], int i); 
 
 
// part of the first term: 3'rd order term 
long double L( const long double H[], int i); 
 



 
// h^3 
long double f( const long double H[], int a, int b); 
 
 
 
 
 
//--------------------------------------------------------------------------- 
ofstream fout; 
 
 
#pragma argsused 
int main(int argc, char **argv) 
{ 
 
        int time_lengH; 
        char file_name[20]; 
 
        cout<<" \n\n\t Beginning Forward Euler.........\n\n"; 
        cout<<" \t  Press enter to begin. "; 
        cin.get(); 
 
        cout<<"\n\n\t Please enter the file name for the output: "; 
        cin>>file_name; 
 
       cout<<"\n\n\t Please enter the number of seconds to simulate = "; 
       cin>>time_lengH; 
       cin.get(); 
 
 
        // create output file 
        fout.open(file_name); 
 
        //output formatting 
  fout.setf(ios::fixed); 
  fout.setf(ios::showpoint); 
  fout.setf(ios::right); 
        fout.precision(14); 
 
    cout.setf(ios::fixed); 
  cout.setf(ios::showpoint); 
  cout.setf(ios::right); 
        cout.precision(14); 
 
 
        // set Boundary values 
        boundary(); 
 
        // set initial conditions 
        initial_condition(); 
 
 
       fout<<"#\n#\t Number of points ="<<N<<endl; 
       fout<<"#\n#\t delta_t = "<<delta_t<<endl; 
       fout<<"#\n#\t D = "<<D()<<endl; 
       fout<<"#\n#\t delta_x = "<<delta_x<<endl; 
       fout<<"#\n#\t Domain = "<<delta_x*(N -1)<<endl;               
       fout<<"#\n#\t precursor ="<<precursor<<"\n#\n#"<<endl; 
 
 
       fout<<"#\tInitial conditions:  "<<endl; 
        for( int j = 0; j < N ; j++) 
            { 
                fout<<"#\t H["<<j<<"] = "<<H[j]<<"."<<endl; 
                //cout<<"\t H["<<j<<"] = "<<H[j]<<"."<<endl; 
            } 
 
 
// set initializatoin data 



long double t = 0; 
 
long double wall = H[N-2]; 
 
long double time_stamp =0; 
 
int temp = 0; 
 
for (  t = delta_t;  /*t <= time_lengH*/ ; t = (t + delta_t) ) 
{ 
  // cout<<t<<endl; 
 
 
    for( int i = 1; i < N-1; i++) 
    { 
 
        //fout<<endl; 
        //fout<<"\tI = "<<i<<endl; 
        H_TEMP[i] = H[i] + (delta_t * G( H,i) ) ; 
 
        if( H_TEMP[i] < 0 ) 
           { 
            fout<<"\n\tError: H is less than 0"<<endl; 
            cout<<"\n\tError: H is less than 0"<<endl; 
            cout<<"\n\tT = "<<t<<endl; 
            fout<<"\n\tT = "<<t<<endl; 
 
            fout<<"\n\n\tTime = "<<t<<endl; 
            for( int w = 1; w <=i ; w++) 
            { 
             fout<<"\tH["<<w<<"] =\t"<<H_TEMP[w]<<"\n"; 
            } 
 
 
            cin.get(); 
            cin.get(); 
            return 0; 
           } 
 
    }   // end space for 
 
 
    // set H( t+delta_t )  to new value 
    for( int r = 1; r < N-1; r++) 
        { 
             H[r] = H_TEMP[r]; 
            // fout<<"\t"<<i<<"\t"<<H[i]<<"\n"; 
        } 
 
 
    // print every second 
    if (  ( (time_stamp + 1 - delta_t) < t) &&  ( (time_stamp + 1) >= t )  ) 
        { 
            time_stamp = time_stamp + 1; 
            cout<<" \tTime ="<<t<<endl; 
            //cin.get(); 
            fout<<"\n\n# Time = "<<t<<endl; 
            for ( int u = 0; u < N ; u++) 
                fout<<"\t"<<u*delta_x<<"\t"<<H[u]<<endl; 
        } 
 
       // once we hit the wall we stop 
       if( H[(N-2)] >= (wall*2) ) 
        break; 
 
 
 
       temp++; 
       if( temp == 10000 ) 
        { 



         cout<<t<<endl; 
         temp = 0; 
        } 
 
}   // end time for 
 
 
 
     fout<<"#\n#\n#\tTime = "<<t<<endl; 
     for( int w = 0; w < N; w++) 
       { 
         fout<<"\t"<<delta_x*w<<"\t"<<H[w]<<"\n"; 
       } 
 
 
        fout.close(); 
 
        cout<<"\n\n\t!!!!!! Program Terminated !!!!!!!"; 
        cin.get(); 
 
 
        return 0; 
 
}   // end main 
 
 
 
//--------------------------------------------------------------------------- 
//--------------------------------------------------------------------------- 
 
 
 
// Set boundary conditions 
void boundary() 
    { 
 
        H[0] = 1.0; 
        H_TEMP[0] = 1.0; 
 
 
        H[N-1] = precursor; 
        H_TEMP[N-1] = precursor; 
 
        return; 
 
    }   // end boundary 
 
 
 
//--------------------------------------------------------------------------- 
//--------------------------------------------------------------------------- 
 
 
 
// Set initial conditoins 
void initial_condition() 
    { 
 
       int x, y, w; 
 
       bool set_y = false; 
       bool set_w = false; 
 
       for ( x = 0; x < N ; x++) 
        { 
 
            if(   x*delta_x < 1) 
                H_TEMP[x] = H[x] = 1.0; 
 
            else if( x*delta_x >2 ) 



            { 
                H_TEMP[x] = H[x] = precursor; 
                if( !set_w ) 
                    { 
                     w = x; // w is set to index where x*delta_x < 2 
                     set_w = true; 
                    } 
            } 
            else 
                if( !set_y) 
                { 
                  y = x; // y is the first index that x*delta_x  > 1 
                  set_y = true; 
                } 
 
        }   // end for 
 
 
       long double delta = (1 - precursor) / ( w - y + 1); 
 
       // this creates the linear initial condition from 1 to .1 
       for ( int t = 1; y <=w ; y++, t++ ) 
           H[y] = 1 - delta*t; 
 
 
       return; 
 
    }   // end initial_condition 
 
 
 
//--------------------------------------------------------------------------- 
//--------------------------------------------------------------------------- 
 
 
 
long double G( const long double H[],  int i) 
    { 
        long double X; 
 
        X = -A(H,i); 
        X = X + D()*B(H, i); 
        X = X - C(H, i); 
 
        if ( Log ) 
            fout<<"\t G["<<i<<"] = "<<X<<endl; 
        return X; 
 
    }   // end G 
 
 
 
//--------------------------------------------------------------------------- 
//--------------------------------------------------------------------------- 
 
 
 
// 4'th order term 
long double A( const long double H[], int i) 
    { 
 
        long double X, Y; 
        long double denominator = powl( delta_x, 4); 
 
        X = f(H, i, i+1)* L(H, i+1); 
        Y = f(H, i-1, i)* L(H, i); 
 
        if ( Log ) 
        { 
            fout<<"\t A["<<i<<"] : X = "<<X<<endl; 



            fout<<"\t A["<<i<<"] : Y = "<<Y<<endl; 
            fout<<"\t Delta_X ^ 4: = "<<denominator<<endl; 
        } 
 
 
 
        X = X - Y; 
 
        if ( Log ) 
            fout<<"\t A["<<i<<"]: X - Y = "<<X<<endl; 
 
        X = X / denominator; 
 
        if ( Log ) 
            fout<<"\t A["<<i<<"] = "<<X<<endl; 
 
        return X; 
    }   // end A 4'th order term 
 
 
 
//--------------------------------------------------------------------------- 
//--------------------------------------------------------------------------- 
 
 
 
long double B( const long double H[], int i) 
    { 
 
        // Use central differences 
 
        long double X; 
 
//          General formula 
//              X =  f(H, i, i+1) * ( H[i+2] - H[i] ) 
//                 - f(H, i-2, i-1) * ( H[i] - H[i-2]); 
 
        // ghost point (i - 2 = -1) is equal to ( i + 2) which would be i 
        if ( (i != 1) && ( i != (N-2) )  ) 
        { 
            X =  f(H, i, i+1) * ( H[i+2] - H[i] ); 
            X =  X - f(H, i-2, i-1) * ( H[i] - H[i-2]); 
        } 
        // ghost point ( i + 2 = N) is equal to ( i - 2) which would be i 
        else if ( i == (N-2) ) 
        { 
            X =  f(H, i, i+1) * ( H[i] - H[i] ); 
            X =  X - f(H, i-2, i-1) * ( H[i] - H[i-2]); 
         } 
        else if ( i == 1) 
        { 
            X =  f(H, i, i+1) * ( H[i+2] - H[i] ); 
            X =  X - f(H, i, i-1) * ( H[i] - H[i]); 
         } 
 
        X = X / (4 * delta_x * delta_x); 
 
        if ( Log ) 
            fout<<"\t B["<<i<<"] = "<<X<<endl; 
 
        return X; 
    }   // end B 
 
 
 
//--------------------------------------------------------------------------- 
//--------------------------------------------------------------------------- 
 
 
 



long double C( const long double H[], int i) 
    { 
 
        long double X; 
 
 
        X = powl(H[ i + 1], 3); 
        X = X - powl( H[ i - 1 ], 3); 
 
        X = X / ( 2*delta_x) ; 
 
        if ( Log ) 
            fout<<"\t C["<<i<<"] = "<<X<<endl; 
 
        return X; 
    }   // end C 
 
 
 
 
//--------------------------------------------------------------------------- 
//--------------------------------------------------------------------------- 
 
 
 
long double D() 
    {  
        return (long double)0.00; 
    }   // end D 
 
 
 
 
//--------------------------------------------------------------------------- 
//--------------------------------------------------------------------------- 
 
 
 
// 3'rd order term 
long double L( const long double H[], int i) 
    { 
 
        // the possible values for i are  1 to N 
        // conditions to test for are N, N-1, 1. 
 
        long double result = 0; 
        //long double temp = 0; 
 
        if  ( (i > 1) && ( i < (N-1) ) ) 
         result = H[i+1] + 3*H[i-1] - 3*H[i] - H[i-2]; 
 
        // ghost point( i -2 = -1) is equal to i 
        else if (i == 1 ) 
         result = H[i+1] + 3*H[i-1] - 3*H[i] - H[i]; 
 
        // ghost point ( i + 2 = N) is equal to N-2 
        else if ( i == (N-1) ) 
            { 
             result = H[N-2] + 3*H[i-1] - 3*H[i] - H[i-2]; 
            } 
 
     //   temp = delta_x*delta_x*delta_x; 
 
        result = result; // temp; 
 
        if ( Log ) 
            fout<<"\t L["<<i<<"] = "<<result<<endl; 
 
        return result; 
 



    }   // end L, 'third order term 
 
 
 
//--------------------------------------------------------------------------- 
//--------------------------------------------------------------------------- 
 
 
 
// h^3 
long double f( const long double H[], int a, int b) 
    { 
        long double X; 
 
        // boundary condiions 
        if( a == -1 ) 
           a = 1; 
 
        else if (  a == N) 
           a = N-2; 
 
        else if ( ( a < -1) || ( a > N) ) 
            { 
             cout<<"\n\t Error:  F[a] = "<<a; 
             cin.get(); 
            } 
 
 
         // boundary condiions 
        if( b == -1 ) 
           b = 1; 
 
        else if (  b == N ) 
           b = N-2; 
 
        else if ( ( b < -1) || ( b > N) ) 
            { 
             cout<<"\n\t Error:  F[b] = "<<b; 
             cin.get(); 
            } 
 
        X =  powl( H[a],3 ) + powl( H[b],3 ); 
        X = X / 2 ; 
 
        if ( Log ) 
            fout<<"\t f["<<a<<"]["<<b<<"] = "<<X<<endl; 
 
        return X; 
 
    }   // end h 
 
 
//--------------------------------------------------------------------------- 
//--------------------------------------------------------------------------- 



delta_t = C*delta_x4 

C = 1/20



 

 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
N = 50   Hmax = 1.29056720013955 

N = 100 Hmax = 1.23512103035421  

N = 200 Hmax = 1.20706260883653  







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Precursor = 0.1 

– Velocity was found to be = 1.105521 units / s  

–  compared to 1.11 units / s predicted 

–  .4% error 

 

Precursor = 0.05 



– Velocity was found to be = 1.005025 units / s 

– compared to 1.0525 units / s predicted 

–  4% error 

 

 



Silicone Oil Experiment: 
 

 

PLATFORM 
 
 The objective of this experiment is to determine the behavior of a fluid flowing 

down an incline plane.  In order to perform the experiment a platform needs to be built.  

After careful analysis of several similar experiments the size of the was determined to 

be 50 cm by 100 cm.  These dimensions are sufficiently large to observe any triangle or 

finger formation.  Before the platform will be built there are some requirements that 

need to be satisfied: 

 

•  Strong enough to sustain the weight of a glass sheet 

 

•  Ease in operation. 

 

•  Stable under all angle inclinations 

 

•  Able to level the platform anywhere 

 

 

To ensure the strength of the platform a sheet of ¾ inch plywood was used with two 

thin sections at each end to eliminate any curvature from the sheet.  Two identical sets 

were manufactured, one for the bottom and the other for the top where the glass will be 

placed.  Both of these platforms are being attached with a double hinge at one end.  In 

the lower platform in each corner a ½ inch holes were drilled and level screws mounted 

to ensure the vertical and horizontal stability.  Having assembled the casing, the design 

of the rising mechanism is to follow.  After several different approaches the one that 

best satisfies the range of inclination is the one shown in the following figure.  



 
Figure #1 Solid Model of the Platform. 
 

The threaded rod allows for fine adjustments to achieve any angle in the range of 

0 to 90 degrees.  This device was secured to the lower platform with several screws and 

a stopper at the end to counteract the thrust force.  To ease the rising and lowering 

several wooden blocks have been attached to the back of the platform holding the 

glass, shown in figure #2. 



 
Figure #2 Model of Lifting Mechanism  
 

For low angle a separate extension rod has been constructed to ensure stability 

of the platform.  Also at the bottom of the inclined surface there will be attached two 

stoppers so that the glass will not slide during the experiment.   

Finally, the platform is ready for testing.  Using the adjustable screws and a level beam 

the apparatus will be setup in a designated area where the experiments will be 

performed.  The last component of the apparatus is the release mechanism.  It was 

especially difficult to arrive at the best technique of releasing the fluid properly.  

Fortunately, with the combined help our team the best device was produced.  It was 

decided that a soft rubber with stiff handle would work.  The only part that best fits the 

requirements is the doorstopper with rubber bottom.  This doorstopper was then cut and 

bent into the following shape to ensure proper release of the fluid.  



 
Figure #3 Release Mechanism 
 

At this point all of the component are manufactured and several trials were 

conducted to ensure proper functionality of all components. 

 

EXPERIMENTS 
 
 Before any experiment the glass was cleaned with soap to ensure proper 

conditions.  Next a sheet of girded paper was placed underneath of the glass to allow 

measurement of the position of the fluid at any given time.  To work efficiently a digital 

camera was used to record the motion of the fluid and then later data was be extracted 

for analysis.  Several experiments were conducted at different inclinations, ~2.5, 30, 60, 

~82 degrees.  In our experiment the liquid used was Silicone Oil with following 

properties:  

Property name Value Units 

Kinematic Viscosity  υ = 0.5 cm2

sec  
Density ρ = 0.96 gm

cm3
 

Surface Tension γ = 21 gm

sec 2
 



 

The amount of oil used during experiments was 25 gm.  For the small inclination 50 gm 

was used.  To successfully perform an experiment one need top follow simple, yet 

critical steps: 

•  Clean the glass before each run with soap or cleaner 

•  Measure the amount of fluid to be used 

•  Adjust the platform to required inclination 

•  Position the camera so that the entire platform is viewed, for best results place 

the camera perpendicular to the platform to minimize distortion in extracted data 

•  Place the release bar at any given position and apply necessary pressure to 

eliminate any gaps between the rubber and the glass, critical step 

•  Pour the liquid behind the release bar and wait until liquid spreads uniformly 

•  Gently and evenly lift the bar, it is recommended to move the release bar 

backwards as it is lifted to eliminate any splashing.  Do not allow dripping from 

the bar onto the glass after release, it may alter the results. 

Several dozens of experiments were performed for angles ranging from 2.5 to 82 

degrees.  Due to limited resources and time the current release bar does not perform 

well for angles close to 90 degrees.  To illustrate how the experiments were conducted 

a recording will be shown.   

 
 
Experiment and Theory: 
 
To be able to compare the experimental results to theoretical computations several 

transformations are needed, linearization and expansion in the limit of small ‘q’.  After 

explanation of linear stability and linearization analysis in detail in previous section, 

Theory, one needs to be bale to compare the theoretical results with the experimental.   

Since the all equations are in non-dimensional form a scale factors need to be 

computed.  This is accomplished by using the following parameters in a relation to 

compute the appropriate scale factors.   



distance scale

Xc

γ
ρ g⋅

sin
π

180
θ⋅








1
3

velocity scale

Vc
γ

3 ν⋅ ρ⋅
sin

π
180

θ⋅







⋅
 

where:

γ surface tension

ρ density of fluid

g gravitational constant

ν kinematic viscosity

θ inclination angle  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Data Collection and Image processing 
 
 

In order to not worry about collecting data in real time we decided to video tape 
the experiments. The experiments were recorded on a digital video camera, which can 
later be connected to a computer to extract position and time information needed to 
compare with theoretical values derived by other group members. 
 
Equipment used:  
  
Hardware: 

 
 

 
 
 

1) JVC Cybercam Digital video camera 
 
2) Macintosh G3 with Fire Wire ports 

 

 
 
3) Silicon Graphics Indy R5000 
 
 
 

2

1 

3



Software used: 
 

1) Adobe Premier 5.1c  
 

2) Matlab 5.1.0.421 
 
 
 
Procedure:   
 

1) Videotape the experiments and record the given parameters for the experiment 
(e.g. Angle of inclination). 

2) Connect the Video camera to the Macintosh G3 using firewire cables and extract 
the video of the experiments on to the computer using the Adobe Premier 
software. 

3) Extract individual frames from each experiment using the Premier software. Each 
frame was saved as a tiff image file for portability. Each file was given the time 
code as the name for processing it in the correct order later. Typically we 
extracted about 40~60 frames for each experiment. 

4) Transfer all extracted frames to the Silicon Graphics stations, and use Matlab to 
open each frame and click on individual tips and roots to measure the x and y 
position of each within the images. 

 
 

    

 

 
 
 
 
 
 
 

tips roots 

x

y



Matlab will then output each point as a pair of x and y  coordinates into a text file also 

given the time code as its name. (Note: the x and y coordinate is not the same as 

derived in theory and numeric, x and y in this report are strictly in reference to the 

coordinates displayed on the figure above.) This text file now has the raw data, which is 

corrected and calibrated by programs we created.  

 

Error sources:  

 

As with any experiment there are always sources of error. In data collection part 

of this lab there are minor details to consider. The major source of error is camera 

position. We created a relatively similar lighting environment for each experiment. We 

also placed the camera on a stable base with a level to make sure it is not slanted. In 

order to counter act parallax and other optical effects on the images, the camera was 

also kept as close to a straight view of the plane as possible. Also we created a grid 

system to place behind the glass as reference points. Taking no chance to believe that 

parallax has not affect the images we devised a scaling factor for each experiment. This 

factor is a correction factor for the y component, since that will have the largest variation 

and the motion we are interested in is the y coordinate in the image. Since we have a 

grid system in the image it self as reference. We know that each box is approximately 2 

cm. Thus we take a y point near the top of the image and another y point at the bottom. 

We divide the pixel length by the number of centimeters between them and that 

becomes a scaling factor for the positions extracted from Matlab.  



Transforming the Raw Data into Usable Data 

 

 

In order to see how the data collected compared to the theory, the data had to be 

transformed many times.  In this section, I will explain, for an experiment with 2n points 

(roots and tips) and m times, how raw data was arranged and how we transformed that 

into data we could analyze.   

In a typical experiment with 2n points and m times, we had n roots and n tips.  

Associated with each root or tip were two pieces of data, the coordinate (x and y) and 

the time the data was collected. Therefore for a typical experiment, the final data would 

have 2n*m pieces of data.   

 

 

The raw data was organized in the following way:  

 

We had m files with 2n pieces of data.  Each time ti had associated with it a file.  

In other words, the data was organized by time.  In order to understand the data, we 

had to organize the data in an understandable manner for each root and tip.  That is to 

say that we would need n files for the roots, and n files for the tips, with each file 

containing m rows, each having one entry for the position, and one entry for the time.   

The raw data contained m files.  Each of these files was labeled with a 

timestamp.  The timestamp is of the format %d-%d-%d, where %d is an integer.  An 

example would help understand the naming convention for the files.  For example, if a 

file was named 17-03-15, this means that the data contained in that file was collected 

on the 17 minutes, 3 seconds and 15 frames after the experiment was started.  Each 

second is equivalent to 30 frames.  Assuming 5 roots and 5 tips, the data within each 

file, the data was organized in the following manner: 

 

 

 

 



x11 x21 

x31 x41 

x51 x61 

x71 x81 

x91 x101 

y11 y21 

y31 y41 

y51 y61 

y71 y81 

y91 y101 

   

 

The first thing that needed to done is to arrange the data in the following manner in 

each file. 

 

x11 y11 

x21 y21 

x31 y31 

x41 y41 

x51 y51 

x61 y61 

x71 y71 

x81 y81 

x91 y91 

x101 y101 

 

 

This was done using rearrange.cpp ( See code attached )  

 

Once all of the files were in the format shown above, we got the time information 

from the data.  This was done using the ls –1 | sort –n > time command run in the 



directory with the raw data. What this does is it lists all of the files, sorts them, and then 

sends them into a file named time.  At this point, the file time contains one column with 

m entries.  The layout of this file is not unlike the table shown below (for m = 10): 

 

12-02-00 

12-02-10 

12-02-20 

12-03-00 

12-03-10 

12-03-20 

12-04-00 

12-04-10 

12-04-20 

12-05-00 

 

From this, we generated a column of times (decimal values) using time.c, which 

is also attached.  Since the time data was common to all of the files, we only needed to 

have one copy for the time being.   

After gleaning the time information from the files, we conveniently renamed the 

files to make it easier to access them in an organized manner using a shell script 

named renamescript. The names of the files ranged from 1 to m since we had m files.   

Once the files were renamed, it was time to scale the data.  The data contained 

within the files was in the units of pixels.  We converted it to standard units (cms) using 

scale.c which took as input the scaling factor.  After the scaling factor, it was time 

arrange the data according to points (not times).  This was done using a shell script 

called savescript.  This script was probably the trickiest part of the data transformation 

process.  This script opens up each file in the data after the previous transformation.  It 

then puts each row i into the right file.  The algorithm for this is the following (pseudo 

code) 

 



for all the files in current directory 
          { 
 for each element in the file 
  { 
  do  
  if(i equals 4n + 1)   
  then i  = 1 
  if i is even, output data element to file, then newline  //here the file is i – i/2  
  if i is odd, output data element to file, then tab          //(integer division) 
  } 
 } 
 

After this script, each file will have data associated with a particular tip or root.   

 

 

x11 y11 

x12 y12 

x13 y13 

x14 y14 

x15 y15 

x16 y16 

x17 y17 

x18 y18 

x19 y19 

x110 y110 

 

 

The next thing that must be done to the data is combining the time values into 

the data.  Since the y values don’t really matter, since the x value is the one we care 

about, we can dispose of the y values.  This is done by comb.c, which will strip each file 

of the y values.  It will then add the time values into it, thus completing the 

transformation from the raw data into usable data.   



t1 x11 

t2 x12 

t3 x13 

t4 x14 

t5 x15 

t6 x16 

t7 x17 

t8 x18 

t9 x19 

t10 x110 

 

To summarize, the data transformation included the following: 

 

Tranformation Done by 

Rearrange data so that each row 

represents a unique point. 

rearrange.cpp 

Get the time data from the file names time.c 

Rename the files conveniently Renamescript 

Scale the data for metric units scale.c 

Rearrange the data organized by points, 

not times 

savescript 

Combine the information about each root 

and tip with the time the data was 

collected 

comb.c 

 

I also used another script called runscript, which is also attached, to automate 

the process of running a particular program on a large number of files.  

In conclusion the tools provided by the Unix operating system were very 

instrumental in making the data transformation process simple.  It would be extremely 

hard to get the data in the right format without indispensable tools such as data 

redirection, pipelines, scripting and sorting the file as well as the man pages.   



Flow and Instability of a Viscous Film down an Inclined Plane 
 

Fluid flowing down an inclined plane commonly exhibits a fingering instability in 

which the contact line corrugates. It is believed that below a critical inclination angle the 

base state before the instability is linearly stable. Regardless of the long time linear 

stability of the front, microscopic scale perturbations at the contact line grow on a 

transient time scale sufficient enough to excite nonlinearities and thus initiate the finger 

formations. The results of a set of experiments to determine some of these features are 

presented in this report. 

Our objective here is to study experimentally the nonlinear structures developing 

from the initial instability. In our experiments, all the parameters of the problem here 

held constant, except for the inclination angle, fluid viscosity, and fluid volumes. 

However, in the results provided, most of the information obtained was using the same 

fluid viscosity and fluid volume (unless noted otherwise). 

In our experiments, a fixed volume of fluid was released at topmost portion of the 

plate. The fluid volume was fixed at 25 grams (unless otherwise noted), and the fluid of 

choice was silicone oil. The density of the silicone oil was 0.96 and the nominal 

kinematic viscosity was 50 cSt. The results for angles of decline of 5°, 30°, 60°, and 82° 

are reported here.  

A glass plate that was 0.5 m wide and twice as long was mounted so that one 

end could be raised with respect to the other. A grid of paper was attached below the 

plate with marks made every 2 cm high and every 5 cm wide. These lines were viewed 

and photographed with a digital camcorder that was mounted approximately 90° to the 

plate. However, distortion can be seen when analyzing the video captures. The time 

stamp of each video capture labeled the name of each file taken. 

Prior to starting an experiment, the glass surface was cleaned in a consistent 

sequence with paper toweling and a cleaning solvent made by the same manufacturer 

as the silicone oil. The angle of inclination was measured and set to the previously 

mentioned values, and checks were made with a level to ensure that the table was not 

tilted in the lateral direction. The oil was placed behind an unattached gating system, 

sealed at each end, and allowed to settle to an even film before time of release. After it 



was ascertained that the fluid was level, the gating system was lifted by hand, allowing 

the contents to spill out onto the plate toward the upper end. In this manner, the oil 

volume was uniformly distributed across the plate without having any initial velocity. 

While this method of release worked satisfactorily, it may have been less free of 

disturbances than those used in previous experiments. In this regard, it may have 

affected the fingers that were observed and the time for their initial appearance. 

The location of the roots and tips were obtained from the video captures stored in 

a computer for later analysis using Matlab software. About 20 roots or tips were 

observed in each run, however only the middle 10-15 roots and tips were used to obtain 

the location and time histories. 

I will now present the results of our fully nonlinear time-dependent simulations of 

a thin liquid film flowing down an inclined plane. In all of our experiments, we were 

considered the simplest form of fluid flow – the flow of a thin film of a completely wetting 

fluid down an inclined plane. By completely wetting fluid, we’re assuming that the 

contact angle (where the front of the fluid hits the surface) is virtually non-existent or 

zero.  

The basic picture behind the experiments is that the contact line of the fluid 

against the surface becomes unstable with respect to the transverse perturbations. It is 

believed that this instability is related to both the inclination angle and the contact angle. 

Since we’re ignoring contact angle in our experiments, we will observe the behavior of 

the fluid using different angles of inclination.  

Assuming complete wetting, we found that varying the inclination angle modifies 

the shape of the emerging patterns (i.e. fingers versus triangles). The inclination angle 

strongly affects the shapes of the emerging patterns: large inclination angles lead to 

finger-like tips while smaller angles produced the triangular shaped patterns. 

First, we looked at the wavelengths between the fingers/tips. Table 1 shows that 

the experimental results basically agree with the theoretical results. The observed 

separation between the tips of the patterns is within a reasonable accuracy with the 

wavelength of the mode of maximum growth, λm. 

 



Next, we observed the growth rates of our experiments for long times. Figures 1 

and 2 show the results of our experiments for simulations done at both 30° and 60°, 

respectively. These figures show the “linear” relationship between the ln-ln plot of 

distances of the fingers/tips versus time. 

Measurements of the growth rates for long times of these structures have been 

reported and the results were as follows: 

 

(1) Huppert reported that the locations of the extreme positions of either type of 

disturbance were proportional to (time)q for some exponent q; for tips of the 

fingers the exponent was 0.6, while the roots (where neighboring fingers join) 

was virtually stationary. 

(2) Jerrett and de Bruyn observed fingers only in their experiments and reported that 

the average exponent for the tips of the fingers was 0.65 for glycerine (kinematic 

viscosity 110 cSt) and 0.52 for a mineral oil (kinematic viscosity 15 cSt) 

 

Figures 3 and 4 show how the growth rate of the fingers/tips grow exponentially as time 

increases for simulations done at both 30° and 60°, respectively. 

Next, we observed the growth rates of our experiments for early times. Figures 5 

and 6 show the linear stability analysis of figures 3 and 4 for the overall average of 

distances of fingers/tips. The results shown are for simulations done at 30°, 60°, and 

82°, respectively. 

It is very important to note that the linear stability analysis is limited to very early 

times, so we expect some error in the direct comparison of experimental and theoretical 

results. Linear stability analysis applies only to short times and cannot predict the 

behavior of the system when the perturbations become large. At this point is where the 

nonlinear simulations are the only means of linking experiments with theory. 

The straight-line graphs for all experiments show that the tip and root locations L 

and the time t are related by laws of the form L~eβt, for some positive exponent β∗ t. The 

computer was used to obtain a least-squares estimate of the values of these exponents. 

Table 2 shows the growth rates β, defined by L(t)/L0=exp(βt) [where L(t)=xf(t) – xt(t)]. 



For early times, L(t) increases exponentially with a growth rate close to the one given by 

linear stability analysis, β≈0.24. For later times, L increases linearly consistent with the 

prediction that there is a transition from exponential to linear increase of pattern length, 

which can be seen in figures 3 and 4. 

 

Table 1. Wavelengths in cm 

ANGLE α VOLUME,  
G 

KINEMATIC  
VISCOSITY, CC 

WAVELENGTH λ, 
(THEORETICAL) CM 

WAVELENGTH λ, 
(EXPERIMENTAL) CM 

30° 25 50 3.69 2.74 
60° 25 50 2.29 2.49 
82° 25 50 1.95 1.73 

 

 

Table 2. Growth Rates of Fingers/Tips  

ANGLE 
α 

VOLUME,  
G 

KINEMATIC  
VISCOSITY, 

CC 

NON-
DIMENSIONAL 

TIME TC  

LINEAR 
STABILITY 

SLOPE 

EXPONENT β 
(THEORY) 

EXPONENT β 
(EXPERIMENT)

30°,tip 25 50 0.025815 6.0115 0.2≤β≤0.6 0.1552 
60°,tip 25 50 0.012411 16.463 0.2≤β≤0.6 0.2043 
82°,tip 25 50 0.01038 24.902 0.2≤β≤0.6 0.2585 
 

 

Figure 1. 
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Figure 1 shows a plot of the natural logarithm of the distances of tips X, down a glass 

plate for disturbances produced when 50 cSt silicone oil flowed at 30° to the horizontal 

direction, as a function of the natural logarithm of time T. 

 

 

 

Figure 2. 

 

 

 

 

Figure 2 shows a plot of the natural logarithm of the distances of tips X, down a glass 

plate for disturbances produced when 50 cSt silicone oil flowed at 60° to the horizontal 

direction, as a function of the natural logarithm of time T. 
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Figure 3. 

 

 

 

Figure 3 shows a plot of the natural logarithm of the distances of tips X, down a glass 

plate for disturbances produced when 50 cSt silicone oil flowed at 30° to the horizontal 

direction, as a function of time T. 

 

Figure 4. 
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Figure 4 shows a plot of the natural logarithm of the distances of tips X, down a glass 

plate for disturbances produced when 50 cSt silicone oil flowed at 60° to the horizontal 

direction, as a function of time T. 

 

 

Figure 5. 

 

 

 

 

Figure 5 shows a zoom plot of the natural logarithm of the overall average of distances 

of tips X, down a glass plate for disturbances produced when 50 cSt silicone oil flowed 

at 30° to the horizontal direction, as a function of time T. Added onto the graph is a fitted 

trendline corresponding to the linear stability analysis with its proper equation. 
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Figure 6. 

 

 

Figure 6 shows a zoom plot of the natural logarithm of the overall average of distances 

of tips X, down a glass plate for disturbances produced when 50 cSt silicone oil flowed 

at 60° to the horizontal direction, as a function of time T. Added onto the graph is a fitted 

trendline corresponding to the linear stability analysis with its proper equation. 

 

Figure 7. 
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Figure 7 shows a zoom plot of the natural logarithm of the overall average of distances 

of tips X, down a glass plate for disturbances produced when 50 cSt silicone oil flowed 

at 82° to the horizontal direction, as a function of time T. Added onto the graph is a fitted 

trendline corresponding to the linear stability analysis with its proper equation. 

 
 
Conclusions: 
 

There is no evidence behind the understanding of the nonlinear development of 

the instability. However, possible effects that may cause instability include microscopic 

effects, such as the smoothness of the surface of the plane and the presence of 

contaminants. 

The accuracy of our results is based solely on the consistency of our means of 

data collection from the video captures. Possible effects that may cause error in our 

data analysis include camera angle distortion and precise “clicking” in the Matlab 

analysis. 

Time also played a significant role in the accuracy of our results since we were 

only able to analyze a handful of experiments. The analysis of a single experiment took 

between 4-6 hours on average. If we were able to analyze at least 3-4 experiments 

using the same parameters, our results would be a lot more concrete. 
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