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Contact Line Instabilities of Thin Liquid Films
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We present results of fully nonlinear time-dependent simulations of a thin liquid film flowing down
an inclined plane. Within the lubrication approximation, and assuming complete wetting, we find that
varying the inclination angle considerably modifies the shape of the emerging patterns (fingers versus
sawtooth). Our results strongly suggest that the shape of the patterns is not necessarily related to either
partial or complete coverage of the substrate, a technologically important feature of the flow. We find
quantitative agreement with reported experiments and suggest new ones.
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The flow of thin films is relevant in a number of dif-
ferent fields, such as engineering (microchip production),
biology (lining of mammalian lungs), and chemistry
(flow of surface active materials). These flows can be
driven by gravitational forces (flow down an inclined
plane [1–5]), centrifugal force (spin coating [6]), thermal
gradients, or Marangoni forces [7]. In all these different
settings, the dynamics of the fronts of these films is not
very well understood. In many situations, the fronts
become unstable, leading to the formation of fingerlike
rivulets, triangular sawtooth patterns, or, in the case
of surfactant flow, dendritic tip-splitting petals. Very
often, these instabilities are undesirable in technological
applications, since they might lead to the formation of
dry regions. From a more fundamental point of view, one
wishes to understand the dynamics of these strongly non-
linear systems, and reach general conclusions concerning
instabilities.

In this Letter, we concentrate on perhaps the simplest
of these problems, the flow of a thin film of a com-
pletely wetting fluid down an inclined plane. Better un-
derstanding of this problem will provide a basic building
block in assessing the issues relevant to more involved ex-
perimental setups and technological configurations. Our
approach to this problem is computational: we solve nu-
merically the partial differential equation (PDE) which
governs the fluid motion. Improvement in computational
methods permits us to, for the first time, accurately pre-
dict the dynamics of large systems, in computational do-
mains which compare well with experimental ones. Our
results allow for new insight into the nature of the in-
stability, in particular, related to partial versus total cov-
erage of the substrate, and to the shape of the emerging
patterns.

The basic experimental picture is that the contact line
becomes unstable with respect to transverse perturbations
[1–5]. It has been conjectured that this instability is re-
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lated to the formation of a capillary ridge in the fluid pro-
file, just behind the advancing contact line. There are two
important factors which influence the instability and the
pattern formation process. (1) Inclination angle: Flow
down a steeper incline is more susceptible to instabilities,
and (2) contact angle: the fluids characterized by differ-
ent wetting properties could lead to formation of different
patterns and to a different degree of surface coverage [1].
Recent, well-controlled experiments [4,5] emphasize that
it is still not clear how exactly these two factors influence
the dynamics.

The linear stability analysis (LSA) [8–10] recovered
the fact that there is a band of unstable modes, with short
wavelengths stabilized by surface tension. While a basic
agreement with the experimental results has been reached
(e.g., the observed separation between the tips of the
patterns agrees reasonably well with the wavelength of
the mode of maximum growth, lm), there are a number
of unanswered questions [4,5,10]. Most importantly, LSA
is limited to early times, so that the questions concerning
nonlinear mode interaction cannot be addressed. The
computations of the full PDE have been so far limited
to narrow domains [11,12]. These computations provide
better insight into some of the still open questions (in
particular, concerning the influence of wetting proper-
ties of a fluid); however small computational domains
do not allow for direct comparison with experimental
results.

All the theoretical and computational methods require
some regularizing mechanism—either assumption of a
small foot of fluid in front of the apparent contact line (pre-
cursor film), or relaxing the no-slip boundary condition at
the fluid-solid interface [13]. Here, we use a precursor film
and employ lubrication approximation. Averaging over a
short (z) direction (perpendicular to the substrate), one ob-
tains a fourth order nonlinear equation of diffusion type for
the film height, h�x, y�,
© 2001 The American Physical Society
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where = � �≠x , ≠y�, D�a� � �3Ca�1�3 cot�a�, Ca is the
capillary number, and a is the inclination angle. The
second term accounts for surface tension, while the two
last terms stand for the normal and parallel components of
gravity, respectively. Here Ca � mU�g, where m is the
fluid viscosity, g is the fluid-air surface tension, and U is
the velocity scale. The fluid height is scaled by hc, the
thickness far behind the contact line. Next, we scale the
velocity by U � rgh2

c sina�3m, in-plane coordinates by
xc � �hca2� sina�1�3, where a �

p
g�rg is the capillary

length, and use the natural time scale tc � xc�U (g is grav-
ity, and r is the fluid density). We note that the lubrica-
tion approximation requires the slope of the free surface to
be small; this requirement implies ��hc�a�

p
sina�2�3 ø 1

(see, e.g., [8]). For small a’s, this is always fulfilled; how-
ever, for large a’s, it is valid only for very thin films, such
as those in [5], where hc�a � 0.2. We concentrate on this
situation and assume that the lubrication approximation is
valid; however, we note that this approximation is often
used [8–12,14,15] outside its strict range of validity with
reasonable success in explaining some of the experimen-
tal data.

Our finite difference simulations of the 1D version of (1)
led to important conclusions concerning numerical meth-
ods [16]. A number of issues related to the accuracy, sta-
bility and efficiency have been clarified; in particular, it
was shown that a precursor film model performs computa-
tionally much better than the slip regularization. For this
reason, we use a precursor film model in the 2D simula-
tions where efficiency is crucial.

Our 2D simulations, based on the numerical approach
developed in 1D context, are performed in a domain of
the size �Lx , Ly�, with the boundary conditions given by
h�0, y� � 1, h�Lx , y� � b, hx�0, y� � hx�Lx , y� � 0, and
hy�x, 0� � hy�x, Ly� � hyyy�x, 0� � hyyy�x, Ly� � 0 (b
is the precursor film thickness; we use b � 1022). Most
of our simulations are performed on a fixed rectangular
grid characterized by Dx � 0.2, Dy � 0.25. Conver-
gence studies [17] show that this grid size is satisfactory.
Time integration uses an implicit second-order accurate
scheme; the time step (typically Dt � 1023) is chosen
dynamically based on accuracy requirements. The initial
configuration is a well-known traveling wave resulting
from 1D simulations (e.g., [8,9]), with the front at xf0,
subject to small perturbations in the y direction. These
perturbations model deviations from the straight front in
the experiments. Then, the perturbed front is given by
xf�y� � xf0 2

PN
i�1 Ai cos�2py�li�, where Ai (we use

#0.1) is the amplitude of the ith mode and li � 2Ly�i.
In the limit N ! `, this initial condition is the Fourier
expansion of a smoothly corrugated contact line.
We start by simulating a narrow domain of width Ly �
16 (comparable to lm from LSA [8,9]), and perturb the
contact line by a single mode, l � Ly . We concentrate
on the basic picture of the instability for early and inter-
mediate times, where the results can be compared both
with LSA and experiments and do not consider the issues
such as recently reported growth saturation for very long
times [12].

Figures 1a and 1b follow the evolution of the fluid front
as a function of time. For D � 0, the initial perturba-
tion develops into a long finger, characterized by almost
straight sides. In the case D � 1, however, the normal
component of gravity drives lateral spreading, leading to a
much wider pattern with oblique sides, consistent with ex-
periments [5,18]. Figure 1c gives the positions of the front,
xf , and of the trough, xt . For early times, we note that the
instability develops later for larger D. For later times, and
for D � 0, the velocities of propagation of fronts, yf ,
and troughs, yt , are approximately constant: yf � 1.55,
and yt � 0.7 [the velocity of the unperturbed flow would
be y � 1 1 b�1 1 b� � 1]. For D � 1, however, yt

and yf approach each other as time progresses. We note
that rather small b’s (b & 0.02) are needed for the results
shown in Fig. 1 to be b independent; larger b’s lead to
significant changes. In particular, we find that, for larger
D’s, an increase of b could lead to a transition from un-
stable to stable regimes, consistently with LSA [10] and
weakly nonlinear analysis [14]. The stability boundary in
the D-b space agrees with the result in [3] that predicts
that D ~ log�b�.

Figure 1d shows the growth rates s, defined by
A�t��A0 � exp�st� [A�t� � xf�t� 2 xt�t�]. For D � 0
and early times, A�t� increases exponentially with a
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FIG. 1. Snapshots of the contact line shapes (plotted in t � 5
intervals) for the flow down a vertical plane (a), and inclined
plane (b). The positions of the fronts and troughs as functions
of time (c), and growth rates (d) are also shown; part (d) also
shows exponential fits for early times as explained in the text
[Lx � 40, A0 � A�0� � 0.2].
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growth rate close to the one given by LSA [8], s � 0.24.
For later times A increases linearly (at least for the time
range considered here), consistent with the qualitative
argument given in [15] that predicts a transition from
exponential to linear increase of pattern length. For
D � 1, we still obtain exponential growth for early times,
now characterized by a smaller growth rate s � 0.11, as
predicted by LSA [10]. For later times, the growth slows
down and it becomes even slower than linear. Simulations
with intermediate values of D show that there is a gradual
transition between the linear growth for D � 0 and the
slower one for D � 1.

Figure 2 shows the fluid profiles h�x, y0� and h�x0, y�
for D � 0, 1 at a fixed time. The profiles along y0 � 8
(Figs. 2a and 2c) compare very well with experimental
ones in [5]; the profiles along y0 � 0 show that there is
also a (small) bump at the troughs. Figures 2b and 2d
show the profiles along the y direction. In the trough re-
gions (x0 � 48, 146 for D � 0, 1, respectively) we see the
formation of a valley close to the center, with fluid ridges
at the sides. For D � 0, the profiles midway between the
tip and the trough (x0 � 80) can be fitted very well by a
constant curvature cylindrical cap, as expected since only
capillary forces act in the y direction. For D � 1 this pro-
file (at x0 � 155, Fig. 2d) is flattened due to the normal
component of gravity. Very similar profiles are reported in
[5], where, for smaller inclination angles, they also observe
propagation of the valley to the midway region between tip
and trough.

Our boundary conditions at x � 0 specify a “constant
flux” situation, where a continuous stream of fluid is as-
sumed. Since most of the experiments were performed
with “constant volume,” where a fixed amount of fluid is
freed to flow down an incline [1–4,13], we considered that
configuration as well. The main differences to the results
presented here are associated with the “thinning” of the
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FIG. 2. Thickness profiles of the results from Fig. 1 at a fixed
time along y � const and x � const lines for D � 0, 1.
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fluid far behind the contact line; as shown in [3], both D
and b become time dependent in this situation, leading to
a modified instability mechanism. These questions will be
discussed in detail elsewhere [17].

Physical experiments are characterized by wide do-
mains, much larger than lm. Also, there is no well-defined
perturbation of the contact line at t � 0; it is perturbed
by noise. We model this noise by perturbing the contact
line by a number of modes, N , characterized by random
amplitudes in the range �20.1, 0.1�. The results are N
independent as long as N is sufficiently large.

Figure 3 shows the contour plot of the fluid height for
the flow down a vertical plane. In agreement with LSA
[8,10] and the experiments [1,5], the short l’s disappear
quickly. For later times, long rivulets form, as reported in
[5]. The emerging l’s (separation between the rivulets)
are close to lm (LSA). However, LSA applies only to
short times and cannot predict the behavior of the system
when the perturbations become large. At this point, non-
linear simulations are the only means of linking exper-
iments with theory. Indeed, Fig. 3 recovers results that
compare favorably with experimental ones. An example is
a natural nonuniformity of the emerging l’s — the system
chooses the most favorable configuration that results from
the nonlinear coupling between the initially present modes,
modified by the limitations imposed by a finite system size.
A similar spread of emerging l’s is also observed experi-
mentally [1,4,5]. Furthermore, coarsening effects can also
be seen in Fig. 3 (e.g., compare the profiles at t � 10 and

FIG. 3. Contour plot of the fluid height, h, for the flow down a
vertical plane. The contact line is initially perturbed by N � 50
modes, characterized by li � 2Ly�i, i � 1, . . . , 50, Ly � 96,
and Lx � 20 40 (the domain is increased in the x direction for
long times).
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FIG. 4. Contour plot of the fluid height, h, for the flow down
an inclined plane, D � 1. The initial perturbation is the same
as in Fig. 3.

t � 30 for y � 70). If two rivulets initially develop too
close to each other, the large curvature in the y direction
forces them to merge.

Figure 4 shows the results for D � 1. The emerging
patterns strongly resemble triangular ones, as observed ex-
perimentally [1,4,5]: we also note the formation of val-
leys across the emerging patterns [5]. The growth of the
patterns is slower compared to the D � 0 case, and their
separations and widths are increased, even in terms of the
length scale xc�a�.

From simulations similar to the ones shown in Figs. 3
and 4, we extract results for the average l’s, and for the
width, W , of the patterns (full width at half length). The
detailed analysis and scaling laws for emerging l’s and
W’s will be given in [17]; here we present the main results.
These are computed at late times, where they vary very
weakly with time. To ensure that the particular realiza-
tions shown in Figs. 3 and 4 were good representatives,
we performed additional simulations using different dis-
tributions of initial amplitudes, and with different domain
sizes (Ly � 48, 192). We obtain lD�0 � 11.8 6 2.6, and
lD�1 � 16.0 6 2.7 (the average and one standard devi-
ation are reported). These results, obtained for the first
time by solving the full PDE (1), agree quantitatively with
the experimentally observed ones for “fluid B” in [5,19].
The agreement with experiments strongly supports the ba-
sic assumptions of the model, indicating that the nonlinear
mode interaction is appropriately described within the lu-
brication approximation. We note that the average l’s do
not depend on the domain size, and that the relatively large
spread of l’s is not being reduced as the domain size is
increased. These results show that the experimentally ob-
served spread of l’s is not due to, e.g., boundary effects,
but it is an intrinsic property of the system. The widths are
given by WD�0 � 5.5 6 0.4, WD�1 � 11.2 6 1.0. W’s
are much more uniform than l’s; this observation is also
consistent with experiments [1–5].

In all of our simulations, the troughs move. Conse-
quently, complete coverage of the surface is implied. This
suggests that only partially wetting fluids could lead to
incomplete coverage. The inclination angle influences
the time scale of this coverage and strongly affects
the shapes of the emerging patterns: large inclination
angles lead to fingerlike rivulets, while smaller ones
produce triangular sawtooth patterns. This is supported
by recent experiments; however, further experimental and
theoretical/computational work is needed to clarify the
interplay between wetting properties and gravity. Our
computations provide a step in this direction.
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