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Flow of thin films on patterned surfaces: Controlling the instability
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We present fully nonlinear time-dependent simulations of the gravity-driven flow of thin wetting liquid
films. The computations of the flow on a homogeneous substrate show that the contact line, becomes unstable
and develops a fingerlike or sawtooth structure@Phys. Rev. Lett.86, 632 ~2001!#. These computations are
extended to patterned surfaces, where surface heterogeneities are introduced in a controllable manner. We
discuss the conditions that need to be satisfied so that surface properties lead to predictable pattern formation
and controllable wetting of the substrate. These conditions are sensitive to the presence of noise which is
introduced by random perturbations of the contact line. We analyze this sensitivity and suggest how the effects
of noise can be minimized. Applications of these results to technologically relevant flows are discussed.
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In a number of technological applications, the contact l
of a thin film spreading on a solid surface becomes unsta
leading to the formation of rivulets of fingerlike or triangul
shape, and uneven surface coverage. In coating proce
these instabilities are unwelcome since they may lead to
formation of dry regions. In other applications, such as th
related to microfluidic devices, one desires to produce a
tially wetted substrate. An example is provided by rec
experiments@1#, where an imposed surface anisotropy in t
form of regularly spaced strips leads to regular patterns in
flow driven by thermocapillary stresses.

In this paper, we concentrate on perhaps the simples
unstable thin-film flows, namely, the gravity-driven flow of
wetting fluid down an inclined plane. This configuration r
tains the most important aspects of the problem, while
relative simplicity allows for detailed theoretical and comp
tational analysis. One hopes that if this problem can be
derstood in detail, the analysis can be extended to more c
plex driving forces, fluids, or flow geometries. Further, t
main results are scale independent, allowing for rescalin
macroscopic simulations to micro- or even shorter scales

The basic scenario for the instability development is t
after the release, the initially straight contact line becom
unstable with respect to transverse perturbations. The es
tial characteristics of the initial stage of instability are e
plained by linear stability analysis~LSA! @2–4#, which
shows that the competition between stabilizing surface
sion and destabilizing gravity leads to a band of unsta
modes. Intuitive understanding of this instability can
reached by realizing that the balance of the forces gener
a capillary ridge behind the moving front. This ridge can
thought of as a local accumulation of gravitational poten
energy which is released by development of transverse s
tures ~fingers or triangles! in the manner which is not dis
similar to Rayleigh-Taylor instability. LSA results are bas
cally supported by experiments, although there are still o
issues regarding instabilities for very small inclination ang
@4,5#. Some aspects of the effect of inclination angle on
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stability are reported in our previous works@6#. Here we
consider the influence of surface heterogeneity, with parti
lar emphasis on the flow on patterned surface and resu
selective wetting. For brevity, we discuss only the flow dow
a vertical plane.

Within the lubrication approximation, the flow is the re
sult of the balance among viscous, gravity and capilla
forces. Its velocityv averaged over the normal directionz for
an incompressible fluid is given by~e.g.,@7,8#!

3mv5gh2
“¹2h1rgh2, ~1!

wherem is the viscosity,g is the surface tension,r is the
density,h5h(x,y,t) is the fluid thickness, and¹5(]x ,]y)
(x points downward andy is in horizontal transverse direc
tion!. By using this expression in the mass conservat
equation,]h/]t1“•(hv)50, we obtain the following di-
mensionless partial differential equation

]h

]t
1“•@h3

“¹2h#1
]h3

]x
50. ~2!

Here, thicknessh and coordinatesx, y are expressed in unit
of h0 ~the fluid thickness far behind the front!, and l
5h0Ca21/3, respectively. The capillary numberCa5mU/g
is defined in terms of the flow velocityU far behind the
front. The time scale is chosen asl /U, i.e., the approximate
time it takes the contact line to advance a distancel . Al-
thoughCa does not appear explicitly in Eq.~2!, we define it
here to point out the limits of the lubrication approximatio
which holds providedCa is small. Regarding boundary con
ditions, we concentrate on the problem where fluid thickn
h0 is kept constant. For later reference, note that LSA of E
~2! shows that the band of unstable modes is characterize
the wavelength of maximum growthl* '14, and the mar-
ginally stable wavelength,lc'8 @2#.

All the theoretical and computational methods requ
some regularizing mechanism at the contact line@9#. One
©2002 The American Physical Society01-1
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approach is to relax the no-slip boundary condition@7,9#;
another one is to introduce a small foot of fluid, called p
cursor film, in front of the apparent contact line@2,4#; simi-
larly, one can assume that the surface is prewetted. Re
computations@10# show, in agreement with previous work
~e.g. @3#!, that the choice of a regularizing model does n
significantly effect the dynamics of the fluid as a who
What doesinfluence the dynamics is the introduced leng
scale; thinner precursor/slipping lengthb leads to increased
energy dissipation and slows down the flow. Note that L
and recent experiments@5# have also shown that smallerb’s
lead to increased instability with respect to transverse per
bations.

Since our goal is to understand the flow on patterned
faces, and we already have a parameterb that measures the
resistance to the flow, it is reasonable to consider mode
the surface features by allowing for spatially dependenb.
While it might appear that imposing perturbations of th
form is rather restrictive, this approach is actually quite g
eral. The main idea is to impose heterogeneity on the sys
and, since the macroscopic behavior of the film is not v
sensitive to the microscopic details, the exact manne
which this is done is not crucial. As pointed out above,
introduced length scale determines the degree of energy
sipation at the front, and one expects that its spatial varia
can have significant influence on the macroscopic flow pr
erties@11#. We note that a similar method was used to mo
effects of surface noise@12#. We also note that our simula
tions are complementary to the works which analyze the fl
over perturbations whose depth is comparable to film thi
ness@13#; the perturbations considered here are on the s
of b, i.e., much smaller than the thickness of the main bo
of the film.

Our computational methods, including discussion of e
ciency, convergence, and accuracy are presented elsew
@6,10#. Briefly, we use a finite difference method coupl
with implicit Crank-Nicolson scheme. Boundary conditio
simulate constant influx of the fluid, and at they boundaries
we impose Neumann-type conditions that lead to zero
there; these boundaries can be thought of as slipping w
or as symmetry planes. The simulations that follow use up
60 000 grid points, leading to a large system of nonlin
algebraic equations to be solved at each time step; co
spondingly, computational efficiency is crucial. For this re
son, we use a precursor film model, which is computation
much more efficient@10#.

Figure 1 shows an example of our results. Att50 we start
the evolution from the initial condition obtained in on
dimensional~1D! simulations that assumey independence
The flow is uniform until it reaches the imposed ‘‘channel
at xc510 in the flat precursor of thicknessb0. These chan-
nels have a flat central region of depthdb0 (d,1), and a
surrounding transition region, specified byb(y)5b0@1
2dexp(2wt(y2yc)

2)#, wherewt denotes the transition width
and yc is where the flat and transition regions meet. T
results are insensitive to the choice of the specific funct
b(y), or towt ; we typically usewt54. Below, we report the
04530
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distanced, between the centers of the channels, and th
effective widthw, defined as the width of the region whereb
is less thanb0(11d)/2.

Since there is more resistance to the flow in the chann
~where b is smaller!, the fluid preferentially flows in the
‘‘easy’’ flow regions in between the channels. As a resu
finger-like patterns form, characterized by the formation o
characteristic capillary ridge at the tips@see Fig. 1~b!#. These
patterns are similar to those seen in the experiments@14# and
also in the simulations where contact line itself is perturb
@6#.

A significant difference, however, is that the position a
the distance between the emerging patterns is predeterm
by the imposed channels. In the particular case shown in
1, this distance is equal to 10, significantly less thanl*
predicted by LSA, or the one ('12) observed in the experi
ments@14# and the simulations@6#. Therefore, one can us
the channels to squeeze the emerging fingers closer toge
as in experiments@1#.

The experiments have also shown that there are limit
how closely the fingers can be made to flow@1#. Figure 2~a!
(d58) shows that in simulations the fluid still follows th
surface features; however, ind57 case@Fig. 2~b!#, this is
not the case anymore. Here,d,lc is too small to force the
fluid along the surface features~surface tension prevent
such large curvature between fingers!. The contact line does
however, become unstable, and develops fingers chara
ized by nonuniform separations and growth rates, simila
to experiments@1#. In the simulations, this instability is in
duced by the broken periodicity of the channel configurat
(dÞ7 close toy50 and y596), which represents along
wavelength perturbation. On the other hand, ford56 @Fig.
2~c!#, the periodicity is satisfied, and therefore, the cont
line remains flat@small oscillations barely visible in Fig
2~c!, occur on the grid scale and disappear under grid refi

FIG. 1. Contour plot of the flow over a striped substrate.~a!
Initial configuration~the straight contact line is atx57). ~b! Well-
developed fingers propagating between the channels. The wid
the channels isw53.5, the distance between their centers isd
510, and they are imposed atxc510. Note thaty548 is a symme-
try line; b050.01.
1-2



e
e

a

on
at

s
al

e
lin
al

s
r-
n
it

is

rte

The
ow
ore
r
gly
d-
n
ce
r
rge
een

ility
rsor
ed

Al-
ting,

in-

es

rns
u-
om
rn

t
om

.

ol-
is a
in
re-
e
e
to
lu-
he

bed

t

RAPID COMMUNICATIONS

FLOW OF THIN FILMS ON PATTERNED SURFACES: . . . PHYSICAL REVIEW E 65 045301~R!
ment#. Similarly to d57 case, capillary forces prevent th
fluid from following the short wavelength imposed by th
surface features.

This configuration characterized by a flat contact line h
not been observed experimentally. Figure 2~d! shows that the
reason is that this solution is unstable to small perturbati
~noise!. Here, we perturb the initial straight contact line
t50 by small random perturbations~see below for details!;
this is sufficient to induce instability. Additional simulation
have shown thatany perturbation captured by numeric
resolution is sufficient to induce instability. Therefore, w
conjecture that small perturbations of either the contact
or the channels configuration can lead to the experiment
observed instability@1# for d,lc .

What happens if the distance between the channel
large compared tolc? From the simulations on uniform su
faces, we know that if the contact line is perturbed by lo
wavelengths, superharmonic frequencies can be exc
through nonlinear mode~self! interaction@6#. Naturally, one
expects a similar effect here. Indeed, Fig. 3 shows that th
exactly what happens. In Fig. 3~a! (d520) we observe the
beginning of excitations of modes characterized by sho

FIG. 2. Snapshots of the fluid profiles indt52 intervals.
Shaded regions represent the channels. All parameters~exceptd’s!
are as in Fig. 1. In~d! the initial position of the contact line is
perturbed by random noise~see text!.

FIG. 3. Fluid profiles for large distances between channels.
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wavelengths; however, channels suppress this instability.
result is that there is still a single finger in each easy fl
region, except at the sides of the domain, where there is m
space. In contrast,d530 ~Fig. 3b! leaves enough space fo
three fingers in each of the easy flow regions. Interestin
enough, initially only two fingers develop, and than ‘‘secon
ary’’ instability leads to the third one. A possible explanatio
is that the channels first locally perturb the flow and indu
instability in their vicinity; for longer times additional finge
forms, since the distance between primary ones is la
enough. To our knowledge, these patterns have not yet b
observed experimentally.

There are other parameters that influence the instab
mechanism and pattern formation: unperturbed precu
thickness, the depth and the relative width of the impos
channels, as well as the inclination angle of the plate.
though the effects of these parameters are rather interes
here we concentrate on another question, and that is the
fluence of noise.

We model noise by perturbing the contact line att50 by
a set ofN@1 modes, characterized by random amplitud
and wavelengthsl i52Ly / i , i 51, . . . ,N @6#. These random
perturbations grow rather quickly and develop patte
which are typically inconsistent with the channel distrib
tion. A relevant question is how to avoid that these rand
perturbations prevent the fluid from following the patte
imposed on the precursor film.

Figure 4~a! shows the resulting patterns ford510, with
xc510 ~as in the previous figures!. We see that the contac
line perturbations are strong enough to prevent the fluid fr
following the channels consistently~compare with Fig. 1!,
although most of the finger tipsare in the easy flow regions
In Fig. 4~b!, we takexc516, so that more time is left to the
contact line perturbations to grow. In this case, the fluid f
lows the channels even less consistently, although there
tendency of the evolving fingers to rearrange, so to flow
the easy regions. We note that the main features of the
sulting flow are affected by noise only if it influences th
flow significantlybeforeit reaches the channel region; onc
the patterns are formed, we find very little sensitivity
noise. Additional simulations show that this general conc
sion is insensitive to the particular noise realization, t
maximum amplitude, or to the choice ofd.

FIG. 4. Snapshots of the flow where the contact line is pertur
at t50 by N550 modes characterized by random amplitudesAi ,
uAi u<0.1. Here,d510; compare with Fig. 1 for the case withou
perturbations.
1-3
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Quite generally, the influence of noise is to bring the s
tem closer to its natural configuration. It breaks the symm
try introduced by the regular surface features, and may l
the system to a state different from the one with unpertur
precursor@Fig. 2~d! shows an extreme example#. We obtain
this result for a gravity-driven flow down an inclined plan
however, due to the similarities of this system to more
volved flows~driven by thermal, electric, or other forces!, we
expect this conclusion to be relevant to these other sett
as well.

To summarize, in this paper we outline the connect
between the natural instability of gravity-driven thin films o
homogeneous surfaces, and the instability caused by
posed perturbations of the substrate. In the latter case
shortest attainable distance between consecutive finge
approximately equal to the critical wavelengthlc obtained
from LSA. Even in the relatively simple model where th
strips are modeled by modified precursor thickness, we
04530
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tain results that are very similar to the flows where surfa
patterns are produced by spatially varying wetting proper
@1#.

Regularity of the flow may be modified by microscop
noise, which we model by perturbing the contact line. T
main conclusion of practical relevance is that significant c
has to be taken so that the natural instability does not in
fere with the desired evolution of the wetting front. O
simulations show one way of reducing the effect of noi
and that is to decrease the distance between the release
and the channels region. Future research shall develo
more detailed understanding of the influence of noise on
flow on an inclined plane, as well as in other related thin-fi
systems.
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