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Flow of thin films on patterned surfaces: Controlling the instability
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We present fully nonlinear time-dependent simulations of the gravity-driven flow of thin wetting liquid
films. The computations of the flow on a homogeneous substrate show that the contact line, becomes unstable
and develops a fingerlike or sawtooth struct{iPllys. Rev. Lett86, 632 (2001)]. These computations are
extended to patterned surfaces, where surface heterogeneities are introduced in a controllable manner. We
discuss the conditions that need to be satisfied so that surface properties lead to predictable pattern formation
and controllable wetting of the substrate. These conditions are sensitive to the presence of noise which is
introduced by random perturbations of the contact line. We analyze this sensitivity and suggest how the effects
of noise can be minimized. Applications of these results to technologically relevant flows are discussed.

DOI: 10.1103/PhysReVvE.65.045301 PACS nunierd7.15.Gf, 47.20.Ma, 47.62q, 68.15+e

In a number of technological applications, the contact linestability are reported in our previous work6]. Here we
of a thin film spreading on a solid surface becomes unstablegonsider the influence of surface heterogeneity, with particu-
leading to the formation of rivulets of fingerlike or triangular lar emphasis on the flow on patterned surface and resulting
shape, and uneven surface coverage. In coating processa@ective wetting. For brevity, we discuss only the flow down
these instabilities are unwelcome since they may lead to tha vertical plane.
formation of dry regions. In other applications, such as those Within the lubrication approximation, the flow is the re-
related to microfluidic devices, one desires to produce a pagult of the balance among viscous, gravity and capillary
tially wetted substrate. An example is provided by recenforces. Its velocity averaged over the normal directiaifor
experimentg1], where an imposed surface anisotropy in the@n incompressible fluid is given kie.g.,[7,8])
form of regularly spaced strips leads to regular patterns in the
flow driven by thermocapillary stresses.

In this paper, we concentrate on perhaps the simplest of i i ) ) , i
unstable thin-film flows, namely, the gravity-driven flow of a Whereu is the viscosity,y is the surface tensior is the
wetting fluid down an inclined plane. This configuration re- 4€nsity,h=h(x,y,t) is the fluid thickness, an8l = (dx,dy)
tains the most important aspects of the problem, while itdX Points downward ang is in horizontal transverse direc-
relative simplicity allows for detailed theoretical and compu-t0n)- By using this expression in the mass conservation
tational analysis. One hopes that if this problem can be ungduation,éh/dt+V-(hv)=0, we obtain the following di-
derstood in detail, the analysis can be extended to more confensionless partial differential equation

3uv=yh?VV2h+pgh?, )

plex driving forces, fluids, or flow geometries. Further, the h h?
main results are scale independent, allowing for rescaling of 3—+V~[h3VV2h]+a—=O. )
macroscopic simulations to micro- or even shorter scales. at X

The basic scenario for the instability development is that
after the release, the initially straight contact line becomeglere, thicknes$ and coordinates, y are expressed in units
unstable with respect to transverse perturbations. The esse®f ho (the fluid thickness far behind the frontand /
tial characteristics of the initial stage of instability are ex- =hoCa ', respectively. The capillary numb&a=uU/y
plained by linear stability analysi$LSA) [2—4], which is defined in terms of the flow velocity far behind the
shows that the competition between stabilizing surface tenfront. The time scale is chosen &#U, i.e., the approximate
sion and destabilizing gravity leads to a band of unstabldime it takes the contact line to advance a distariceAl-
modes. Intuitive understanding of this instability can bethoughCa does not appear explicitly in E¢2), we define it
reached by realizing that the balance of the forces generatégre to point out the limits of the lubrication approximation,
a capillary ridge behind the moving front. This ridge can bewhich holds providedCa is small. Regarding boundary con-
thought of as a local accumulation of gravitational potentialditions, we concentrate on the problem where fluid thickness
energy which is released by development of transverse struty is kept constant. For later reference, note that LSA of Eq.
tures (fingers or trianglesin the manner which is not dis- (2) shows that the band of unstable modes is characterized by
similar to Rayleigh-Taylor instability. LSA results are basi- the wavelength of maximum growtk* ~14, and the mar-
cally supported by experiments, although there are still opeginally stable wavelengthy.~8 [2].
issues regarding instabilities for very small inclination angles All the theoretical and computational methods require
[4,5]. Some aspects of the effect of inclination angle on in-some regularizing mechanism at the contact fi@g One
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approach is to relax the no-slip boundary condit{@h9];
another one is to introduce a small foot of fluid, called pre-
cursor film, in front of the apparent contact lif@4]; simi-
larly, one can assume that the surface is prewetted. Recent
computationd10] show, in agreement with previous works
(e.g.[3]), that the choice of a regularizing model does not
significantly effect the dynamics of the fluid as a whole.
What doesinfluence the dynamics is the introduced length
scale; thinner precursor/slipping lendthleads to increased
energy dissipation and slows down the flow. Note that LSA
and recent experimenf§] have also shown that smallbis

lead to increased instability with respect to transverse pertur-
bations.

Since our goal is to understand the flow on patterned sur-
faces, and we already have a paramét#nat measures the
resistance to the flow, it is reasonable to consider modeling
the surface features by allowing for spatially dependent
While it might appear that imposing perturbations of this
form is rather restrictive, this approach is actually quite gen- FIG. 1. Contour plot of the flow over a striped substras.
eral. The main idea is to impose heterogeneity on the systenhjitial configuration(the straight contact line is at=7). (b) Well-
and, since the macroscopic behavior of the film is not Verydeveloped fingers propagating between the channels. The width of
sensitive to the microscopic details, the exact manner if€ channels isv=3.5, the distance between their centersdis
which this is done is not crucial. As pointed out above, thet: 1|(_)' a_ng t:gyoire imposed>a{=10. Note thay =48 is a symme-
introduced length scale determines the degree of energy digy e Po=FHL
sipation at the front, and one expects that its spatial variatiodistanced, between the centers of the channels, and their
can have significant influence on the macroscopic flow propeffective widthw, defined as the width of the region whdre
erties[11]. We note that a similar method was used to models less tharby(1+ 8)/2.
effects of surface noisgl2]. We also note that our simula- Since there is more resistance to the flow in the channels
tions are complementary to the works which analyze the flowfwhere b is smalley, the fluid preferentially flows in the

over perturbations whose depth is comparable to film thick-€aSy” flow regions in between the channels. As a result,

) : . nger-like patterns form, characterized by the formation of a
n::zs[.lia], the ;k)‘erturtl)latlt?[r;ls Cct)r? S|?hgrekd here fatrﬁ on thebs C?:%haractezristic capillary ridge at the tipsee Fig. 1)]. These
gf tr;el-ii.lﬁmuc smaller than the thickness of the main bo ypatterns are similar to those seen in the experiméddtkand

. . _ _ i _also in the simulations where contact line itself is perturbed
Our computational methods, including discussion of effi- 6].

ciency, convergence, and accuracy are presented elsewherea significant difference, however, is that the position and
[6,10]. Briefly, we use a finite difference method coupledthe distance between the emerging patterns is predetermined
with implicit Crank-Nicolson scheme. Boundary conditions by the imposed channels. In the particular case shown in Fig.
simulate constant influx of the fluid, and at théoundaries 1, this distance is equal to 10, significantly less thén

we impose Neumann-type conditions that lead to zero fluredicted by LSA, or the onex(12) observed in the experi-
there; these boundaries can be thought of as slipping wallghents[14] and the simulation$6]. Therefore, one can use

or as symmetry planes. The simulations that follow use up tdhe channels to squeeze the emerging fingers closer together,

60000 grid points, leading to a large system of nonlinea”> N expenmentél]. o
) : . } The experiments have also shown that there are limits to
algebraic equations to be solved at each time step; corr

How closely the fingers can be made to flfly. Figure 2a
spondingly, computational efficiency is crucial. For this rea W oSSl ingers . Figure 2a)

. L ; “(d=8) shows that in simulations the fluid still follows the
son, we use a precursor film model, which is computationallyy ¢~ e features: however. th=7 case[Fig. 2b)], this is
much more efficienf10]. ' ' ‘

! not the case anymore. Hem<\ . is too small to force the
Figure 1 shows an example of our resultstAt0 we start  fjyid along the surface featuresurface tension prevents
the evolution from the initial condition obtained in one- gch large curvature between fingefhe contact line does,
dimensional(1D) simulations that assumg independence. however, become unstable, and develops fingers character-
The flow is uniform until it reaches the imposed “channels” jzed by nonuniform separations and growth rates, similarly
at x,=10 in the flat precursor of thicknesg. These chan- to experimentg1]. In the simulations, this instability is in-
nels have a flat central region of depfb, (6§<1), and a duced by the broken periodicity of the channel configuration
surrounding transition region, specified By(y)=bg[1 (d#7 close toy=0 andy=96), which represents kng
— Sexp(—w(y—Yo)?)], wherew; denotes the transition width, wavelength perturbation. On the other hand, der6 [Fig.
andy. is where the flat and transition regions meet. The2(c)], the periodicity is satisfied, and therefore, the contact
results are insensitive to the choice of the specific functiorine remains flat{small oscillations barely visible in Fig.
b(y), or tow; ; we typically usew,=4. Below, we report the 2(c), occur on the grid scale and disappear under grid refine-
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FIG. 4. Snapshots of the flow where the contact line is perturbed
att=0 by N=50 modes characterized by random amplituBes
|A{|<0.1. Here,d=10; compare with Fig. 1 for the case without
perturbations.

wavelengths; however, channels suppress this instability. The
) 20 40 & result is that there is still a single finger in each easy flow
region, except at the sides of the domain, where there is more
FIG. 2. Snapshots of the fluid profiles iAt=2 intervals. space. In contrasd= 30 (Fig. 3b leaves enough space for
Shaded regions represent the channels. All param@tgeeptd’s)  three fingers in each of the easy flow regions. Interestingly
are as in Fig. 1. In(d) the initial position of the contact line is enough, initially only two fingers develop, and than “second-
perturbed by random noigsee text ary” instability leads to the third one. A possible explanation
is that the channels first locally perturb the flow and induce
meni. Similarly to d=7 case, capillary forces prevent the instability in their vicinity; for longer times additional finger
fluid from following the short wavelength imposed by the forms, since the distance between primary ones is large

surface features. enough. To our knowledge, these patterns have not yet been
This configuration characterized by a flat contact line ha®bserved experimentally.
not been observed experimentally. Figutd)Zhows that the There are other parameters that influence the instability

reason is that this solution is unstable to small perturbationsmechanism and pattern formation: unperturbed precursor
(noise. Here, we perturb the initial straight contact line at thickness, the depth and the relative width of the imposed
t=0 by small random perturbatiorisee below for details  channels, as well as the inclination angle of the plate. Al-
this is sufficient to induce instability. Additional simulations though the effects of these parameters are rather interesting,
have shown thatny perturbation captured by numerical here we concentrate on another question, and that is the in-
resolution is sufficient to induce instability. Therefore, we fluence of noise.
conjecture that small perturbations of either the contact line We model noise by perturbing the contact ling&at0 by
or the channels configuration can lead to the experimentallp set ofN>1 modes, characterized by random amplitudes
observed instability 1] for d<<i.. and wavelengtha;=2L,/i, i=1,...N [6]. These random
What happens if the distance between the channels igerturbations grow rather quickly and develop patterns
large compared ta.? From the simulations on uniform sur- which are typically inconsistent with the channel distribu-
faces, we know that if the contact line is perturbed by longtion. A relevant question is how to avoid that these random
wavelengths, superharmonic frequencies can be excitgoerturbations prevent the fluid from following the pattern
through nonlinear modéself) interaction[6]. Naturally, one  imposed on the precursor film.
expects a similar effect here. Indeed, Fig. 3 shows that this is Figure 4a) shows the resulting patterns fde=10, with
exactly what happens. In Fig(8 (d=20) we observe the x.=10 (as in the previous figur@sWe see that the contact
beginning of excitations of modes characterized by shorteline perturbations are strong enough to prevent the fluid from
following the channels consistentigompare with Fig. },
although most of the finger tipsre in the easy flow regions.

98 In Fig. 4(b), we takex.= 16, so that more time is left to the
80F contact line perturbations to grow. In this case, the fluid fol-
eak lows the channels even less consistently, although there is a
tendency of the evolving fingers to rearrange, so to flow in
>48F the easy regions. We note that the main features of the re-
32f sulting flow are affected by noise only if it influences the
16l flow significantly beforeit reaches the channel region; once
the patterns are formed, we find very little sensitivity to
% noise. Additional simulations show that this general conclu-

sion is insensitive to the particular noise realization, the
FIG. 3. Fluid profiles for large distances between channels. maximum amplitude, or to the choice df
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Quite generally, the influence of noise is to bring the sys4ain results that are very similar to the flows where surface
tem closer to its natural configuration. It breaks the symmepatterns are produced by spatially varying wetting properties
try introduced by the regular surface features, and may leafl].
the system to a state different from the one with unperturbed Regularity of the flow may be modified by microscopic
precursor Fig. 2(d) shows an extreme exampléVe obtain  noise, which we model by perturbing the contact line. The
this result for a gravity-driven flow down an inclined plane; Mmain conclusion of practical relevance is that significant care
however, due to the similarities of this system to more in-Nas to be taken so that the natural instability does not inter-
volved flows(driven by thermal, electric, or other fordesve fere with the desired evolution of the wetting front. Our

expect this conclusion to be relevant to these other settingdmulations show one way of reducing the effect of noise,
as well. and that is to decrease the distance between the release point

To summarize, in this paper we outline the connectionand the channels region. Future research shall develop a

between the natural instabilty of graviy-criven thin fims on g 1% (€ L0 AUFERAETE bo R EREE Rl T B e
homogeneous surfaces, and the instability caused by im; stems

posed perturbations of the substrate. In the latter case, thé/ '
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