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Nonlinear dynamics and transient growth of driven contact lines
L. Kondica) and A. L. Bertozzi
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~Received 18 May 1999; accepted 2 August 1999!

We consider the theory of driven contact lines in a complete wetting scenario and examine the effect
of small scale localized surface disturbances on the global shape of the film profile. We compute
how the nonlinear amplification scales with the precursor thickness of the film and the characteristic
width of the surface pattern. Nonlinear disturbances of the film profile are connected to ‘‘transient
growth’’ in the linear stability analysis@Phys. Fluids9, 530~1997!#. © 1999 American Institute of
Physics.@S1070-6631~99!02711-7#
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The stability of driven contact lines has an extens
literature, both experimentally1–3 and theoretically.4–8 The
problem of gravity driven contact lines~flow on an inclined
plane! poses an interesting paradox. Recent linear stab
analysis at smaller inclination angles8 shows that there is a
critical inclination angle below which a driven contact lin
solution is linearly stable to transverse perturbations. T
critical inclination angle depends on the microscopic len
scale at the contact line. On the other hand, experime3

show that contact line instabilities occur at smaller inclin
tion angles than those predicted by the linear stability theo
The paper8 proposed an alternative linear mechanism for
initiation of instabilities. Due to the singular dependence
the base state on the microscopic length scale at the co
line, the linear stability problem also exhibits marke
transient-time amplification, with a rate that scales like
microscopic length scale. This study has raised so
questions9–11regarding whether such transient growth can
observed in experiments.

In this work we clarify the nature of the transie
growth, showing that, as was suggested by a heuristic a
ment in Ref. 8, contact line perturbations, imposed loca
can be amplified by many orders of magnitude. In additi
we find a new phenomenon related to this instability; t
there is a characteristic width-scale~larger than the capillary
length! for such perturbations to have a significant transi
effect. This width-scale is significantly larger than typic
surface roughness, implying that special surface des
might be needed to reveal this effect experimentally. F
ordinary rough surface it would be interesting to determin
compound transient effects could occur.

A problem with similar geometry, involving spin
coating over grooved surfaces, was considered in Ref.
They study quasistatic solutions describing planarizat
over perturbations~trenches! whose depth is of the same o
111070-6631/99/11(11)/3560/3/$15.00 356
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der of magnitude as the film thickness. We are interested
related, but different problem of dynamic stability of drive
contact lines flowing over shallow perturbations. Desp
these differences, in both situations, the surface inhomo
neities have to be sufficiently wide~in the direction of the
flow! in order to influence the shape of the film. We al
remark that in a related problem of gravity-Marangoni driv
films13 the microscopic structure of the precursor layer c
cause order one changes in the bulk of the film.

Following8 we consider a dimensionless fourth ord
nonlinear diffusion equation for the film height,h:

ht1¹•~h3¹Dh2Dh3¹h!1sin~a!~h3!x50. ~1!

Here, the last~convective! term, which arises from the com
ponent of gravity in the downstream,x, direction is destabi-
lizing, while the diffusion terms tend to stabilize the flow
The dimensionless film heighth is hp /HN , and HN is the
upstream film thickness, assumed to be a constant~subscript
p stands for a value of a quantity in physical units!. The
downstream film thickness is assumed to be a small cons
b̃ associated with the presence of a precursor layer. The
mensionless space and time variables are, respectivelx
5xp / l 0 , l 05(HNg/rg)1/3, t5tpU0 / l 0, and the velocity
scale isU05rgHN

2 /(3m). Also, r is the fluid density,m its
dynamic viscosity,g is the fluid-air surface tension, anda is
the inclination angle. The usual capillary length isl
5 l 0 sin(a) and the average velocity of the contact line isU
5U0 sin(a). The parameterD5(3Ca0)1/3cos(a), and the
capillary number is Ca5mU/g5Ca0 sin(a). The dimension-
less model~1! has upstream boundary conditionh→1 asx

→2` andh→b5b̃/HN asx→`.
It is well known that the competition between stabilizin

and destabilizing terms in Eq.~1! can lead to a ‘‘bump’’ in
the flow profile. The formation of this bump is typically
0 © 1999 American Institute of Physics
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sign of instability of the flow profile with respect to instabil
ties in the transverse direction. In order to understand n
linear stability of Eq.~1!, we perform numerical simulation
of Eq. ~1! in one space dimension and compare these res
to the linear stability of Eq.~1! in one and two space dimen

FIG. 1. The flow of a film over perturbation, fora590° (D50) ~a!, and
a510° (D'1.61) ~b! @physical parameters correspond to the experim
~Ref. 14!#. The upper inserts show the maximum film height as a function
time, for a perturbed flow~solid line! and unperturbed one~broken line!.
The lower inserts show the perturbation itself (s50.5,w'5.3).

FIG. 2. ~a! Amplification A and dh, for different b’s (a590°, s50.5, w
55.3); ~b! dh andA for differents’s (b50.01,a590°,w55.3); ~c! and~d!
dh for different w’s @~c! s50.5, ~d! b50.01,a590°].
n-

lts

sions. Linear stability analysis was carried out in Ref.
where it was shown that a small perturbation on the scale
b can grow to an order one size. Here we extend the prev
work to the fully nonlinear problem and explore in mo
details the effect of perturbations.

Figures 1~a! and 1~b! show a typical solution of Eq.~1!
in the laboratory frame, that develops as a thin film flo
down an incline. The perturbation ofb of the form f
52s exp@2c(x2xpert)

2#, with characteristic width w
5A4ln2/c in units ofx, and depths in units of unperturbedb
is imposed on the precursor film downstream of the adva
ing front. We choose suchxpert that the fluid is already in
steady-state regime~meaning that the unperturbed bum
height,h0, does not change! before it reaches the perturba
tion, so that the results do not depend on the particu
choice of initial conditions. As the film flows over the pe
turbation, there is a macroscopic change in the bump hei
defined asdh5hmax2h0, wherehmax is the maximum film
thickness. As expected, this effect is much stronger for lar
a ’s @compare Figs. 1~a! and 1~b!#, since the flow shown in
Fig. 1~a! is unstable even without perturbingb, while the
steady state behavior of the film in Fig. 1~b! shows stability.
Still, a finite size bump is produced even in the case o
stable film, meaning thatinstability can be induced by a
small perturbation of the precursor thickness.

Figure 2 shows the results fora590°. Part~a! shows
that the effect of a perturbation is stronger for smallerb’s.
Further, the small perturbation is amplified by the cont
line; we observe that the amplificationA5dh/(sb);b24/3;
so the dependence ofA on b is even stronger than predicte
by the linear theory (A;1/b).8 We also note thatdh
;b21/3. Figure 2~b! gives the effect of the perturbatio
depth;dh and A show strong increase for deeper perturb
tions, which can be understood if one assumes that the

t
f

FIG. 3. ~a! Amplification A and dh, for different b’s (a510°, s50.5, w
55.3); ~b! dh andA for differents’s (b50.01,a510°,w55.3); ~c! and~d!
dh for different w’s @~c! s50.5, a510°, ~d! b50.01,a510°].
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fective’’ film thickness is given byb(12s), in agreement
with Refs. 4,8,15.

Figures 2~c! and 2~d! show some surprising results:the
change of film thickness strongly depends on the pertu
tion width, w. For very narroww, the change inh is strongly
suppressed; it is more pronounced at the intermediate va
saturation occurs at largew’s. The height of the saturation
level and its dependence onb and s can be explained by
assumingdh;(b(12s))21/3, as mentioned before. Figure
shows the results for the flow characterized by small incli
tion angle,a510°. The general features of the results f
a590° are preserved, even though the amplification of
perturbation is suppressed.

The effect that a perturbation has on the stability o
contact line can be understood as follows. In order to in
ence the stability of a contact line, the time scale,tpert

;wl0 /U of the perturbation has to be larger than the tim
scale on which nonlinear effects enter,tnlin; l /U. For w
!1, tpert!tnlin ; so these perturbations do not influence t
stability. For w@1, the nonlinear effects enter on the tim
scaletnlin!tpert, so that the response of the fluid is indepe
dent of w, leading to the saturation. For the intermedia
values ofw, tnlin'tpert, resulting in a smooth transition be
tween the two extreme regions. We note that weakly non
ear analysis of this problem for partial wetting fluid~based
on a slip model!, also shows strong sensitivity of the conta
line instability to variation of the slip length.16

Next, we briefly compare the results of fully nonline
computations with the linear theory, using the same met
as in Ref. 8. Expandingh5h01eeiqyg(x,t), we obtain an
equation forg, which parametrically depends on the wa
numberq. Using the same perturbation as in nonlinear co
putations, we obtain the transient amplification defined
A(linear)5maxx,tug(x,t)u/maxxug(x,0)u. The results are shown
in Fig. 4. The effect of the perturbation becomes more p

FIG. 4. Transient growth in the solution of the linearized problem. For
strongly unstable situation (a590°), we show only the marginally stabl
q50 mode, since largerq’s are linearly unstable, so thatA(linear) is infi-
nite. Fora510°, both theq50 andq50.5 modes are shown.
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nounced at the same largerw’s that are seen for the fully
nonlinear problem.

To conclude, we explore the effect which perturbatio
of a thin film have on the stability of the contact line, an
find that small perturbations of the precursor film can hav
considerable influence. This effect is augmented for sma
values of precursor thickness,b. Such perturbations can b
introduced by surface inhomogeneities. We find that
width-scale of the inhomogeneities is of considerable imp
tance; only the perturbations characterized by large eno
width-scales modify the flow behavior.
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