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Pattern formation in the flow of thin films down an incline:
Constant flux configuration

L. Kondic® and J. Diez”
Department of Mathematical Sciences and Center for Applied Mathematics and Statistics,
New Jersey Institute of Technology, Newark, New Jersey 07102

(Received 22 January 2001; accepted 1 August P001

We present fully nonlinear time-dependent simulations of a thin liquid film flowing down an
inclined plane. Within the lubrication approximation, and assuming complete wetting, we find that
varying the inclination angle considerably modifies the shape of the emerging patterns:
Finger-shaped patterns result for the flow down a vertical plane, while saw-tooth patterns develop
for the flows down an inclined plane. However, in all of our simulations, the roots always move,
indicating that the shape of the patterns is not necessarily related to the surface coverage, a
technologically important feature of the flow. Furthermore, we find that triangular steady-state
patterns may be produced for the flow down an incline, while the fingers typically grow in length
for all explored times. We find quantitative agreement with reported experiments, and suggest new
ones. ©2001 American Institute of Physicg§DOI: 10.1063/1.1409965

I. INTRODUCTION complete surface coverage for @mos) completely wet-
ting fluid, while finger-shaped patterns and partial surface
coverage result for a partially wetting fluid. Jerret and de
Bruyn® and De Bruyfi obtain results consistent with Silvi

. . . e and Dussahand Huppert and further quantify them by
active materials These flows can be driven by gravitational measuring the manner in which the patterns grow. More re-

(flow down an inclined plane centrifugal(spin coating, or . o }
Marangoni forces. In all these different settings, the front.Cent works by Veretennikov, Indeikina, and Chanigck

o -~ " ~""ing, Debler, and CooR,Johnsor, and Johnson, Schluter,
dynamics is not completely understood. In many situations, -’ . . .

. . . . .~ “Miksis, and Bankoft show that the problem is more compli-
the fluid fronts become unstable, leading to finger-like rivu-

. . cated than previously thought. Veretenniketval® perform
lets, triangular saw-tooth patterns, or, in the case of surfac- . .

. o . experiments on both dry and prewetted surfaces and obtain
tant flow, dendritic tip-splitting petals. Very often, these in-

o : ) . C . _different patterns in these two cases. They also report that a
stabilities are undesirable in technological applications, since _ . . . .
artially wetting fluid characterized by a large contact angle

hey may | he formation of dry regions. From a mor ) .
they may lead to the formation of dry regions. From a mo can form an overhanging “nose” at the contact line, in con-

fundamental viewpoint, one wishes to understand the dy: ; . ) ) . .
. : trast to the “wedge” profile typical for more wetting fluids.
namics of these strongly nonlinear systems, and reach gen- . 6 ) .
. L Hocking et al” observe both triangular and finger shaped

eral conclusions concerning instabilities.

In this work, we concentrate on perhaps the simplest 0Patterns Withsa single quid—soqu configuration. Johrisamd
these problems, the flow of a thin film down an inclined Johnsoret al.” modify the experimental setup to allow for a

plane. Experiments are usually performed by releasing a Cor%;)ntln;ljou”s ﬂOV]Y_ of ﬂij_'d’ referred ”:j Vt\'h%t fO"?[WSt asl con;
stant(fixed) volume of fluid at the top of an incline. After §an|| tjhx contigura |otn, Xompare | 0 fi(;]n? an vqumet |
some time, the initially straight contact line, where liquid, In all other experiments. An example ot their experimenta

gas, and solid phase meet, becomes unstable with respectrﬁnsuns is shown in Fig. 1: For a given fluid—solid combina-

transverse perturbations. It has been conjectured that this iHTon,.f(_:hanglnf? the mclmrz]itlonhangle ?f Lhe SUbStrfite can have
stability is related to the formation of a capillary ridge in the significant effects on the shape of the emerging patterns.

fluid profile, just behind the advancing contact line. While More details about the experimental parameters are given in

the initial stages of the instability process are rather welS€¢: IVB. ) , . , ,

understood, as outlined below, it is still not clear what deter- | n€oretical analysis of the problem requires, in the first
mines the long-time nature of the instability, in particular theP!ace. resolving the so-called “contact line paradox.” As it is
shape of the patterns and the degree of surface coverage. THE!! known, assuming standard no-slip boundary condition
work by Silvi and Dussah,expanding on the pioneer work at the contact line leads to a multivalued velocity field there

O . .

by Hupper shows that the wetting properties of the fluid (S€€: €G- D“_SS"’?nqe Gennes, or Haley and 'V"ks@-
play an important role: They obtain triangular patterns and NiS Problem is typically approached by either relaxing the

no-slip boundary condition, or assuming the presence of a
thin precursor film in front of the propagating contact line.
“Electronic mail: kondic@m.njit.edu Both approaches introduce a short length scale into the prob-
YPermanent address: Instituto deiBa Arroyo Seco, Universidad Nacional . . . . .
del Centro de la Provincia de Buenos Aires, Pinto 399, 7000, Tandil /€M, thus requiring analysis of the influence of this additional

Argentina. Electronic mail: jdiez@exa.unicen.edu.ar parameter on the instability.

The flow of thin films is relevant in a number of different
fields, such as engineerirgnicrochip productiopy biology
(lining of mammalian lungs and chemistryflow of surface
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the case of partially wetting fluids some of the assumptions
of the lubrication approach might be violated at the contact
line. Lopez, Miksis, and Bankolf analyze the effect of ne-
glected inertial terms, and show that their influence on the
instability is rather weak, even for(@® Reynolds numbers.
Consistently, the experiments by Johnstral.® where Rey-
nolds number of the flow is systematically varied, show rela-
tively little effect of fluid inertia on the pattern formation
process.

An initial insight into the instability results from the lin-
ear stability analysigLSA), within the framework of the
lubrication approximation. Troiaet al'* perform LSA for
the flow down a vertical plane and show that there is a band
of unstable modes, with short wavelengths stabilized by sur-
face tension. Bertozzi and Brenfitextend the analysis to
the general case of the flow down an inclined plane, and
show that the normal component of gravititydrostatic
term) shifts the mode of maximum growth to longer wave-
lengths, and also tends to stabilize the flow by decreasing the
growth rate of the instability. While a basic agreement with
the experimental results has been readleegl., the observed
separation between the tips of the patterns agrees reasonably
well with the wavelength of the mode of maximum growth,
Am), there are a number of unanswered questions. Most im-
portantly, LSA is limited to the early times evolution of a
single mode, so that the questions concerning the long time
evolution and the nonlinear mode interaction cannot be ad-
dressed. Some of these restrictions have been relaxed by a
weakly nonlinear analysis by KalliadasfsThat work ex-
plains the contact line instability as a phase instability related
to the translational invariance of the system in the stream-
wise direction, and predicts a strong influence of the precur-
sor film thickness: A large precursor film suppresses instabil-
ity, in agreement with the experimental results by
Veretennikovet al® and Ye and Chanty.

There have been relatively few works that approached
this problem from the computational point of view. The rea-
son for this is that, even within the framework of lubrication
approximation, there are still significant computational ob-
stacles to overcome. Some of these are the stiffness intro-
duced in the evolution equations by surface tension, and the
need to resolve short length-scales close to the advancing
contact line. The simulations by Schwaftzoncentrate on
the case of a completely wetting fluid, and show that trian-
gular patterns result in that case. Moyle, Chen, and HdMsy
develop more general simulations of partially wetting fluids,

showing that the shape of the patterns can be modified by
L 500 mm .I fluid wetting properties. Very recently, Eres, Schwartz, and
Roy?® perform the simulations where they appear to reach a
FIG. 1. Patterns formed in constant flux experiment by JohriRaf. 7). nontrivial _travellng Wave(l.'e" a steady fl(_)W conflgurayon .
The fluid is glycerine—water mixtur@nore details about this experimental characterized by a nonuniform structure in the spanwise di-
setup are given in Sec. V)Band the inclination angle i¢from top to  rection for the flow of a completely wetting fluid down a
bottom «=7.2°, 13.9°, 27.9°, and 90.0°. The profiles are shown after theyertical plane.
fI_uid traveled the same distance down an inclifiReproduced with permis- In this work we concentrate on the flow of a completely
sion of the authoy. . . . T
wetting fluid, and analyze the influence of the inclination

The dynamics of the main body of the fluid film is typi- angle on two most relevant aspects of the instability: Shape
cally approached within the framework of the lubrication of the patterns, and surface coverage. An important motiva-
approximation. Goodwin and Homkyshow that this ap- tion for analyzing the effect of this particular parameter
proach is appropriate for completely wetting fluids, while in comes from the fact that previous simulations of this prob-
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lem have been performed only for the flow down a verticalof the film (see, e.g., Greenspdn Following this approach,
plane, while the experiments concentrate on the flow dowmne obtains the average fluid velocitys (u,v),

an (sometimes very slightlyinclined plane. In an earlier h2
work, Diez and Kondit' present the basic outline of the v=——[Vp—pgsinail, )
influence of the inclination angle. That work is extended here 3p

to provide a more complete picture of the instability mecha-whereV = (4, ,dy), h'is the fluid thicknessp is the pressure,
nism, including the discussion of possible formation of non-, is the viscosityp is the densityg is gravity, ande is the
trivial traveling waves. To further facilitate comparison with inclination angle of the plane of the substrate. The coordinate
experiments, we perform simulations in large computationaframe is chosen so thapoints down the incline, andis the
domains that compare well with the experimental ones. Inransverse direction in the plane. We note that Bg.as-
these simulations, we do not enforce the emerging wavesumes no-slip boundary condition at the fluid—solid inter-
lengths, as done previousf§;?° but let the system choose face. The pressure includes the hydrostatic component, and
the separation between patterns on its own. We note that ithe contribution following from the Laplace—Young bound-
the experiments it is not obvious what kind of perturbationary condition at the fluid—air interface

generates the instability. It might develop due to noise per-
turbing either the contact line itself, or the fluid—substrate
interaction, or the body of the fluid far behind the contactwhere y is the surface tension. Assuming fluid incompress-
line. Influence of the perturbations on the fluid—solid inter-ibility, the continuity equation gives

action has been recently analyzed by Bertozzi and Bréefiner,

Ye and Chang/ and Kondic and BertozZf; with the main ~ Z"— _y . (hy)

goal of understanding the instabilities at small inclination at

angles. In this work we concentrate on the effects that per-

turbations of the contact line itself have on the development =— —V-[yh®VV?h—pgh®Vh cosa+ pgh?®sinai].

of the instability, and consider perturbations of the substrate

only briefly at the end of Sec. IV. For clarity, we limit the 3

discussion to the situgtion corresponding to the experimentat, s the |ubrication approximation reduces Navier—Stokes
setup of Johnsogt al,” where there is a constant flux of the oqations to this nonlinear fourth order partial differential
ﬂl,“d far behl'nd the contact Ime.. qurespondlng!y, we do nOtequation that governs the time evolution of the film thickness
discuss the issues related to thinning of the fluid that OCCUT(x v t). To balance viscous and capillary forces in E3),
if a constant volume of fluid is let to flow down an incline.
The main goals of the present work arg1p establish quan-
titative connection between theoretical work and experimen
tal observations, an(?) provide computational results that
will serve as a guide to future research on more fundamental
issues, such as nonlinear mode interaction, and the possible *c
existence of nontrivial traveling wave solutions. . . . .

This paper is organized as follows. First, in Sec. Il we@nda=y/pg is the capillary length. The velocity scale is
explain the main features of the theoretical approach and thghosen naturally al=x./t., and the capillary number is
numerical scheme. In Sec. Il we then present the results dlefined asCa=uU/y. Using this nondimensionalization,
the one-dimensionatlD) simulations, where the fluid front EQ. (3) for h=h/h. is given by(dropping the baps
is assumed to be straight in the transverse direction. The P oh3
results of the simulations in domains whose lateral size is —+V-[h®VV?h]—D(a)V-[h®Vh]+ —=0, 5
close to the wavelength of maximum growth and equal to the X
perturbation wavelength are presented in Sec. IV, where washere the single dimensionless parameteDd(«)
also analyze the influence of the parameténsparticular, = (3Ca)*cot(e) measures the size of the normal compo-
precursor film thickness and inclination angte the long-  nent of gravity. We note that the lubrication approximation
time dynamics of the evolving patterns. Next, in Sec. V, werequires the slope of the free surface to be small; assuming
study the effects of the domain size and of the nonlineaslopes of @1) in terms of our nondimensional variables, this
mode interaction on the resulting patterns. The narrow doimplies|[(h./a)sina)]?*<1.* For smalla’s, this condition
main results allow for a better insight into the fundamentalis always fullfiled; however, for large’s, it is valid only for
issues related to the instability, and the results of the simulavery thin films, such as those in Johnsenal.® where
tions performed in wide domains allow for direct comparisonh./a~0.2. We concentrate on this situation and assume in
with experimental observations. Finally, Sec. VI is devotedthe rest of this work that the lubrication approximation is
to conclusions and final remarks. valid.

As mentioned in the Introduction, all the theoretical and

Il. FORMULATION OF THE PROBLEM AND computational methods require some regularizing
NUMERICAL METHODS mechanism—either assumption of a small foot of fluid in

Within the framework of the lubrication approximation, front of the apparent contact lingorecursor film, see the
the velocity of the fluid is depth-averaged over the thicknessvorks by Troianet al,** Bertozzi and Brennér, or Spa and

p=—yV?h+ pghcosa, 2

we scaleh by the fluid thickness far behind the contact line,
h., and define the scaled in-plane coordinates and the time

by (XY, t) = (X/Xc,Y/Xc t/te), where
aZhC 1/3

Ssina

3u  a’x.
vy hZsina’

4

1 C
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Homsy¥), or relaxing the no-slip boundary condition at The boundary conditions are chosen to model constant
fluid—solid interface(see e.g., Greenspéh,Dussarf® or  fluid flux, ®=hv, far behind the contact line. To this effect,
Hocking and Rivers). Diez, Kondic, and Bertoz# have  we set the boundary condition a0 asd®,/dx=0 for 0
recently performed an extensive analysis of the computa=ys<L,, where®,=huis thex-component ofb. The same
tional performance of these regularizing mechanisms applieoundary condition is also applied at=L,. Thus,h,; as

to the spreading drop problem. In that paper it is shown thatvell asth,j (J=1,... Ny) remain constant in time. This is
the results are rather insensitive to the choice of the modebnforced by settingf,;=fy ;=0 [see Eq.(6)]. At the
consistently with, e.g., Spa and HonféyHowever, the com- boundariesy=0 andy=L, (ngg L,), we have a no-flow

putational performance of the precursor film model is Showrboundary condition®,=0. One choice that satisfies this
to be much better than that of various slip models. For thi%onstraim[see Eq(3)]is

reason, we also use a precursor film of thickriegscaled by

h.) as a regularizing method in this work. dh  &°h

The computational domain is chosen as a rectangle de- @: &_),3:01 aty=0Ly, O=xsLy. (10
fined by O<x=<L, and Osy=<L, which is divided intoN,
XNy node points X;,y;) with i=1,... N, and ] Other boundary conditions can be chosen; we use those

=1,... N,. Equation(5) is then discretized in space using a specified by Eq(10) due to their simplicity, and due to the
central finite difference scheme leading to the following sys{act that they are applicable to a wide variety of problems.
tem of equations foh; ; [that is, the numerical approxima- We note that only the normal component of the fldx,, is

tion to h(x;,y;,t)] set to zero ay=0.L,, while the tangential componernb,,
is let free, so that these boundaries can be thought of as
dhy 0 i S “slipping walls.” Since odd derivatives are set to zero there,
+f,;=0; i=1,... Ny, j=1,... Ny, (6) ;
dt ' they can be also considered as symmetry planes.

. . . Time discretization is performed using implicit Crank—
wheref; ; is a nonlinear operator which depends on the val- . 2
d Nicolson scheme. The advantages of the implicit scheme for

ues ofh at the neighboring grid points. . this problem are obvious: The stability requirement for an
Let us concentrate for a moment on the capillary term,ex licit scheme is thant<C min[Ax Ay]*, where At is a
and define the diffusivityp=h3. To obtain a numerical ap- P Y1

S time step, andC is a positive constant. Thus, an explicit
proximation forf; j, we needDi.yp; andD; j.yp. ThESE (oo oo ires very short time steps for a reasonable spatial
guantities can be obtained by interpolation. While there are q y P P

. . . o accuracy.
various(second-order correctvays in which this interpola- I : T . :
. . . To explain time discretization, it is convenient to substi-
tion can be done, Zhornitskaya and BertdZziand

Zhornitskaya® building upon the work by Bernis and tute k=i+(j~1)Ny, wherei=1,... Ny,j=1,... Ny in
. i . . . the system of ordinary differental equations, E&). Apply-
Friedmart! show that one particular interpolation leads to a. . . ;
S iy . : - “ing Crank—Nicolson scheme to this system, and using the
scheme which is positivity preserving, i.e., the solution

o : L . . notationhy, to denote the solution at the poiktat the time
which is strictly positive fot=0 preserves this property for _, : .
! . 28 . 17, leads to the system dd,,= N, XN, nonlinear algebraic
all times. Diez et al® compare the performance of this Y y

scheme to the one based on standard interpolation, and ﬁne&uatlons
that it has significant computational advantages. We also use hﬁﬂ—hﬁ 1
this scheme here, and interpolate the diffusivity, 1,,; by TJr §(f§+l+ fr)=0 (1sks=N,y), (11
M; hip1#hi where At” is a vth variable time step, antt=vAt”. This
Dit1pj=y 9i+179i ' @) system is linearized using the Newton—Kantorovich method;
his; hip1j=hi the linearized problems are then solved using iterative bicon-

. i " jugate gradient method.
where g(h) is defined byg"(h)=1/D(h). Analogous ex- Time evolution from a given initial conditiofdiscussed
pression is used f.ODi.J“’Z' i _ . in the next sectionis performed by variable time steps, the
_The two gravitational terms in E¢5) are discretized  gj,¢ of which is limited by two requirement&) That the
using standard centered finite differences. In the normaly sion is strictly positive everywhere in the domain, and

gravity term we use (b) that an accuracy condition is satisfied. The condition
h3 . +h3. is enforced by estimating the local relative eregr of the
(M)HmF%, (8)  solutionh; . A Taylor expansion arountl} leads to
n2 J2RY
with analogous expression forhg()i,jﬂ,z. In the parallel ek=(At ) d_r;k (12)
gravity term we discretize as he dt
(&h3) 1 [(h? h2 ) (h ho so that
. i+1] i,] i+1) i,
iy AAX 2ALY At ThY T+ AthY - (At 14 AtY)hY
ey (13

3 TArI (At T+ At)h}

_(hi2,j+hi2 1) (hij+hi—1p)]. 9
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FIG. 3. Fluid thickness and velocity profile of the film near the apparent
contact line forD=1 andb=0.1.

down the incling. We see that, after initial transients, the
c) flow develops a traveling wave profile, that moves with the
constant velocityv=1+b+b? (see, e.g., Bertozzi and
Brennet®).
The main feature of the profile(x,t) is the presence of
a bump near the contact line. This bump, resulting from the
. 3 . L fluid accumulation behind the front, is due to the fact that the
0 02 o4 g, 06 ql8 viscous stress on the plane is much greater in the contact line
region than in the fluid bulk. The increased viscous stress is
FIG. 2. Profiles of a film flowing down a vertical plarte), and down an  palanced by the component of the bump weight in the
?”CX”edop('g”e(b)aJ hg tlime irger"a'hbet""ee][‘ I‘?’Of_”es fZZLg‘Ae gridsize  gownslope direction. Linear stability analy¥i$>2*obtains
L e et tha the presence of the burp s a necessary conition for the
is \y=27/q,,, and the critical wavelength is,=27/q, . instability of the fluid to small perturbations in the transverse
direction. Our LSA result for the parameters used in Figs.
2(a) and 2Zb), are shown in Fig. @). The growth rateo,
If E=max@) (1sk=Ny,,) is less than a given upper bound calculated as the eigenvalue of the linearized probtet2*
Em (typically, E;,= 10~2—10"3), the solutionh; " obtained s consistent with the previous results. An increasb ¢éads
with the time stepAt” is accepted; otherwis@&t” is reduced to a decrease in the growth rates, and also to a shift of the
and a new calculation df};** is performed. mode of maximum growticharacterized by ,,=27/q,,

The simulations that follow are computationally inten- where o(q,,) = maxo(qg)|), to longer wavelengths; we relate
sive, so that significant effort has been put in producing anhis prediction to our 2D simulations later in Sec. V. We also
efficient method. To illustrate this point, we note that largernote that the height of the bump and LSA results depend on
simulations presented in Sec. V, are typically performed usthe precursor thickness: smallereads to larger bump, and
ing about 16 grid points. Spatial discretization then leads to stronger instability. This effect is discussed in more detail in
a system of 1®nonlinear algebraic equatiofiq. (6)]. After  Sec. |V.
linearization, one needs to invert a sparsé&X00° matrix

with about 10 nonzero elements. Any direct approach to There is an interesting feature of the fluid flow in the

_solvmg this probl_em would be t00 slow; f°T that reason aNcontact line region, showfmagnified in Fig. 3(a). We see
iterative method is chosen. Furthermore, time accuracy "€&he formation of a fluid de ressioip) ahead of the front
quirement limits the time step to about 14 requiring about P P

10* time steps for a typical simulation. The computing times;?g)lajn(’D\;Vh;g?n:g\ggﬁ (t:;nablg C:}L: 2?:1\/51 \t/r?éoc:tgvif:)%'g%imu—
on the fastest available workstatiof®12000 CPY vary be- - (DIP P

; ; 0,24 ;
tween 15 and 20 hours for the smaller simulations in Sec. I\)atlons of this problerﬁ, but, to our knowledge, it has not

. ; . been analyzed in any detailThe fluid within the precursor
to a couple of weeks for larger simulations presented in Se%ilm (which is flowing down with the velocity equal fo?) is
V.

sucked into the bulk region due to a decrease in capillary
pressure, and later pushed in the positive direction again.
This negative velocity field can be understood based on mass
conservation. In the moving reference fraifmoving with

Let us for a moment ignore contact line instability, andv;), the flux in thex direction is given by®,=h(v—uvs)
remove they-dependence of the fluid profile from the prob- = —b(b+1), where the last equality can be obtained by
lem. Figures 2a) and 2b) then show snapshots of the fluid calculating the flux far in front of the contact lif&%2432
profiles at equal time intervals f@ =0 andD =1, resulting  Since in the dip regiorh<b, we write h=#6b, <1, and
from these 1D simulationgrecall that+ x direction points  obtain

01F

Remark

Ill. ONE-DIMENSIONAL SOLUTION AND LINEAR
STABILITY ANALYSIS
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T =10.0 h

v=b2—(b+1)(1;0). (14)

Thus, v <0, provided§<(b+1)/(1+b-+b?). Our simula-
tions show that, for any typicd, h in the dip region is small
enough ¢~0.85) to produce negative velocities there.

We note that this depression was first noted in Ref. 33 in
the context of drop spreading on a horizontal pre-existing
film. It is a purely surface tension effect; we have noticed
only very weak influence of the forcing gravity term inx
direction on its magnitude.

IV. EVOLUTION OF A SINGLE TRANSVERSE MODE

In this section we address the problem of the dynamics _
of a thin film contained in a domain whose lateral dimension
is comparable to the wavelength of maximum growth from
LSA, and to the domains used in previous simulations of this
problem®~2° We compare our results with those simula-  F77
tions, as well as with experimental resuitsand lineat*1524 ¢ & %\ 5
and weakly nonlinedf stability analyses. As a representative

case, we usty= 16.

FIG. 4. Contour plot of the flow down a vertical plane perturbed by a single
mode characterized bf,=0.1 and\,=16. The precursor film thickness is
b=0.01, and the grid spacing isx=0.2, Ay=0.25.

A. Vertical plane (D=0)

The simulations are performed using as initial condition
the results of 1D simulations, perturbedtatO by a single
transverse mode characterized by the wavelengthL, .
The position of the front at=0 is then given by

To follow the development of the instability more quan-
titatively, we record the position of the tig,, and the posi-
tion of the root,x,, as a function of timgrecall that the
boundariesy=0,_, can be considered as slipping walls
X¢(Y)=X;9— Ag COK27Y/\p), (15 Figure 5a) shows that there is a rather fast growth of the

where x; is the unperturbed positiofsee also Diez and pattern for very early times, followed by a slower growth for

Kondic?Y). The perturbation is characterized by a small am-Jater times. For these later times, the velocities of propaga-
plitude Ay, and a phase such that this initial condition satis-ton c.>f the tip,v,, and the rooty, are approximately con-
fies dh/gy=0 aty=0,L,. We have verified that without stant..vt~1.55, v;~0.7 (the velocity of the unperturbed
imposed perturbation, the flow evolves for very long times:c_ront_IS Uf%l)f' r:: r(}m these riSUItS.’ wefe_xtrac't:_the length
(t>1000) without deforming the front line, thus indicating r(]t)_xt;_xf of the finger as I".’l lijncglonr:) t!mg.l |Igur<ét5
that numerical noise alongossibly due to roundoff errpr shows this quantity normalized by the initial length

does not lead to instability at the time scales considered in_ 2A¢ on a semilog graph. For early times(t) increases

this work. Most of the computations are performed using aexponentlally with the growth rate [defined byL (t)/Lo
precursor film of thicknes®=0.01, on the gridAx=0.2,
Ay=0.25. The convergence studies show that this grid spac- D=0
ing is sufficient(convergence results follogwThe size of the o /
computational domain is typically varied betweep=40 B
and L,=60, except in the case of simulations extended to S
very long times, presented in Sec. IV C, whdrg=200. . - Xt
Since the computations are performed in the laboratory T , , Xr
frame, the computational box is shifted when necessary in 0 2 ¥ S 100
the direction of the flow. Alternatively, one can perform com- 123ab
putations in the reference frame moving with the velocity of
the unperturbed flowy; ; this corresponds to shifting the box Joop /7 00
at each time step. We have verified that these two approaches S
lead to consistent results. 100

Figure 4 shows the flow at four different times. Since at , , , , e , ) )
t=0 only a single(linearly unstablgwavelength is present, ° » B 75 10 ° » % B 10
this one grows and forms a long finger with almost straight

. . IG. 5. (a) The positions of the tip and root as function of tinig) The
sides, resembllng the shape of the patterns observed k}:é/ngth of the finger normalized by the initial lendth=2A,=0.2 on semi-

8 . . . .
Jphns_oret al,” and r"z‘p_r()ducec_I n '_:'g- (note that Fig. 4 i |og scale; the straight line has a slope of 0.235 as explained in the(dext.
significantly stretched in theg direction. The result from(b) on linear scale. The parameters are as in Fig. 4.
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TABLE I. The table gives the results for th@ondimensional width, a)
length, and growth rates of the patterns for differant, Ay, and the pa- 10°
rameterE,,, that determines accuracy of the time evolution; all other pa-
rameters are as in Fig. 4. The widths are defined as full widths of the _f
patterns at half length; the results are given at time 7. 10"
Ax Ay En width length o =
(R i
0.1 0.125 10?2 9.0 10.6 0.234 " 12
0.1 0.25 107 9.2 10.8 0.235
01 05 102 10.0 11.4 0.238 60 b) eop - b-0005 8
0.2 0.125 102 9.0 10.8 0235 I N b=002
0.2 0.25 102 9.2 11.0 0.235 40 | ey
0.2 0.5 102 9.8 11.5 0.238 3 ,;/i _____ b=0005 X =
0.4 0.125 10° 9.6 6.4 0.204 2of A T p-001
0.4 0.25 102 10.2 6.5 0.205 A b=004
0.4 0.5 102 10.4 6.8 0.207 3 ; P ;=01
0.2 0.25 10* 9.2 11.0 0.235 R L
0.2 0.25 108 9.2 11.0 0.235
0.2 0.25 102 9.2 11.0 0.235 FIG. 6. Influence of the precursor thickndssen (a) length of the finger(b)
0.2 0.25 101 9.6 11.2 0.237 position of the tip, andc) position of the root. Other parameters are as in
0.2 0.25 1.0 9.6 11.4 0.238 Fig. 4. The arrows show the direction in whibhis increased.

Next, we analyze the influence of the precursor film
=exp(ot)] determined to ber~0.235, very close to its value thickness on instability. Experimentally, it is possible to con-
predicted by LSA(for N\~14, Troian et al!* obtain o, trol the value of this parameter in flows on a prewetted sub-
~0.24). Figure &) shows the same result on a linear graph,strate, as done systematically by Ye and ChHndowever,
which is more convenient for late times. For the time rangein most of the experimentdy is a rather small quantityp
shown in this figure, we see linear increase of the finger<10~%—10 5. Such small values df lead to computational
length. The transition between exponential and linear growtldifficulties, since the convergence issues require very fine
is explained qualitatively by Brennét,who estimates that grids and bring computational cost to an unacceptable level.
this transition happens when the length of the pattern beFortunately, from LSA**>?*we know that the growth rates
comes comparable to the width of the capillary ridge. Bydepend onb rather weakly. This is also confirmed by the
comparing Fig. &) with Fig. 2(a), which shows the profile weakly nonlinear analysi®. These results encouraged us to
of the unperturbed front, we see that the computational retry to find the “optimal” value ofb, so that the results that
sults agree well with this estimate. The question of growthare of interest to ugsuch as growth ratg¢sre computation-
for very long times is discussed later in Sec. IV C, in theally accurate, but also almo$t-independent. In order to
more general context of the flow down an inclined plane. Incompare our results with LSA and experiments, we also ex-
the remainder of this section we analyze the influence of th@lore the influence of relatively larg&s on the instability.
parameters used in our computations. Figure Ga) shows the influence df on the length of the

First, we verify that the discretization parameters—qgridpattern. We see that the growth rate of the patterns is signifi-
size and time step—produce sufficiently accurate results. Theantly reduced for largetb’s, in agreement with LSA
main characteristics of the solution we want to check are theesults'**>?* Figures §b) and Gc) show the effect that
widths, lengths, and growth rates of the patterns. These rdarger b’s have on the speed of tips and roots. &s are
sults are shown in Table | for relatively early times, so thatincreased, the tips move slower, while the roots move faster.
we can also compare the results for the growth rates witfThe increase of the root velocities is as expected, since larger
LSA. (Convergence studies are also performed for longy’s permit easier flow(less viscous stresgei the root re-
times, with very similar results.Table | shows that the re- gions. Mass conservation then leads to slowing down of the
sults calculated on a gridx=<0.2, Ay=<0.5 agree very well tips. Thus, increase db makes the velocities of tips and
with the LSA results; largeAx leads, however, to a consid- roots approach the velocity of the unperturbed planar front,
erable error. We note that the time accuracy is kept fixed fofrom above and below, respectively. However, a decrease of
the results shown in the first part of Table I, so that theb below 0.01 has much weaker influence: The speeds of both
convergence is not exactly quadratic. In the second part dips and roots(and the growth rat@sbecome practically
the table we show the influence of the paramé&grwhich  b-independentsee Fig. 6. This weak influence ob on the
determines the size of the time step through B@). For  flow for b<0.01 governed our choice di=0.01 in the
En,<102, and Ax=0.2Ay=0.25, the results are practi- simulations that we compare to experiments, characterized
cally independent of this parameter. Again, due to the spatighresumably by rather thin precursor filf@ any other short
discretization error, the convergence is not exactly quadratidengthscale relevant in the vicinity of a contact line
The results in Table I, as well as similar ones calculated for ~ We note that for all explore@’s, the speed of the roots
longer times, suggest our choice of the gridk=0.2 and s strictly positive. Since this speed is almbsindependent
Ay=0.25 (Ay=0.5 for the results in Sec. V)Band of the for smallb’s, we conjecture that this speed will be positive
imposed time accuracy. even for theb’s relevant in the experiments. Correspond-
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a) T =00 T =100 h
161

FIG. 7. Snapshots of the patternsdt=5 intervals for two representative
b's: (@) b=0.01, (b) b=0.1. Other parameters are as in Fig. 4.

ingly, our results suggest that complete coverage of the sub- ° D

strate eventually results.

The precursor thickness also influences the shape of tHdG. 8. Contour plqt of'the flow down an inclined plari@ € 1). All other
. . arameters are as in Fig. 4.

emerging pattern. Figure 7 show the snapshots of the patterﬁs

for two representative casdss0.01 ando=0.1. The profile

obtained usingo=0.01 is characterized by almost straight The possibility of growth saturation and steady solution for

sides, as observed in the experimétitéargerb leads, how- very long times is discussed below in Sec. IV C.

ever, to a pattern with more oblique sides. Additional simu-

lations show that there is a continuous transition from almost. |ong time dynamics

straight to more oblique patterns asis increased. Fob

=<0.01, the shape is almost insensitive to the valueb of

similarly to the growth rates and to the speeds of tips an

roots. Larger values ob in Ereset al,?° or, equivalently,

larger slipping lengths in Moylet al,*® might be the reason

for obtaining more triangular-like pattern shapes in thos

simulations.

After the overview of the development of the instability,
Jve now concentrate on the dynamics for very long times,
aiming to understand the general features of the flow. The
shapes of the emerging patterns do not change for longer
etimes in any significant manner compared to the results
shown in Figs. 4, 7, and 8. However, long time results give
additional insight concerning increase of the pattern length.
B. Inclined plane (D>0) Fig_ure 10 shows that, for sufficiently lardg®'s, growth

saturation occurs. The growth saturates at smaller pattern

We now proceed to the more general case of the flowengths for largeD’s, as one would expect, since an increase
down an inclined planel{>0). As a representative case, we of D reduces the instability. We have verified that the satu-
chooseL,=\,=16, andD = 1.

Figure 8 shows the contours of the fluid height at four
times. By comparing with Fig. 4, we see that the shape of the - 9
emerging pattern is very different. F&r=0, a finger with
almost straight sides results; fer=1, we obtain a pattern
which much more closely resembles the triangular shapes
seen in the experiments for the flow down an inclined
plan€® (see also Fig. )l Another difference is that the de-
velopment of the instability is much slower f&r=1 com-
pared toD =0, even in our nondimensional unftecall that
the time scald > (sina)~*3, Eq. (4)].

Figure 9 shows the positions of the tips and roots for
D=1; for comparison, we also show the resultsfor 0. In
Fig. 9a) we see that fob = 1, the tips move slower, and the
roots faster, compared =0, as observed experimentally ]
by Johnsonet al® For D=1, we still obtain exponential

growth for early times, now characterized by a smallerFIG o @ Th "  the fronts and root funcii  time §
~ . e . 9. € positions o e Tronts and roots as functions or time fTor
growth ratec~0.11; a decrease af for largerD’s is also D=0,1. (b) The length of the patterns f@=0,1. exponential fits for early

predicted by LSAviz. Fig. 2c)]. For later times the growth  times are also showric) Results from(b) on linear scale. The parameters
slows down and becomes even slower than lifiEay. 9A(c)]. are as in Fig. 4D =0) and Fig. 8 p=1).

100 - USRS D=0
K .
=
-

10
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FIG. 10. Length of the emerging patterns for differ&ris. All other param- 3 600
eters are as in Fig. 4, except the box sizes inxtirection, which ard_, 400

=200.
200

ration effect forD>0 is rather weakly influenced by the _ _ .
. . . . FIG. 11. (a) Long time evolution of the length of the emerging patterns for

precursor thickness, the ma'n effect be_mg t_hat’ for a 9IVeIh _ 0 and differentv’s. The solid lines emphasize the linear growth ffor
D, largerb’s lead to saturation at earlier timgsee also  —0.01, and the deviation from linear growth for=0.1. (b) Length of the
Remark (4) below]. Additional convergence studies show emerging patterns fdb=0 and different.,’s. All other parameters are as
that the saturation effect is not modified by grid refinementn Fig. 4, except the box sizes in thedirection, which are.,=200.
or by modifying the imposed time accuraggffectively,
changing the time step

The growth saturation, that we obtain for largers, appears to be contradictory to our resultsfor 0 shown in
implies the existence of a stable nontrivial traveling waveFig. 10. In order to understand this difference, we performed
solution, that results when the growth stops, and the fluichdditional simulations of th® =0 case. In particular, we
simply translates down the incline, without changing itsanalyzed the effects of increasing—reducing time and space
shape. To our knowledge, this result has not been reported exccuracy of our scheme, and the influence of varying the
the experimental literature. There are few possible explananitial condition, without ever obtaining saturated solution
tions for this. First, most of the experiments are performedor D= 0. However, there are additional factors that can lead
using constant volume configuration; possibly in that setugo modified results. One is the precursor film thickness,
saturation does not occur. In the experiments where the convhich is larger in Ref. 20, compared to the one used here.
stant flux configuration is used results for the time depen- Figure 11a) shows the difference in the results for the flow
dence of the patterns lengths are not reported; however, dtown a vertical plane and for very long times lass in-
appears that steady state profiles have not been obs¥rveccreased: Growth becomes slower than linear tforl00.
Next, our simulations assume completely wetting fluid; theStill, at least for the times we explore, there is no saturation.
fluids used in the experiments are always partially wetting,  Another explanation of the different results is that the
even though the contact angle could be quite small. Finallygrowth saturatiorfand the existence of a nontrivial traveling
there is a possibility that saturation happens on a longer timevave solution may depend on the size of the computational
scale than the one examined in the experiments. We presentiamain in the transversey, direction. Indeed, Fig. 1b)
detailed study of the experimental parameters and compaghows that this is really the case. In this figure we follow the
our nondimensional quantities with the experimental ones ipattern length for a few values &f, andD=0 (recall that
Sec. IV B; here we just note that for the fluid properties ofAy=L,). ForL, comparable or slightly larger thag,,, the
Fluid B2 and for the inclination angle corresponding ap- pattern length increases linearly for very long times. How-
proximately to D=0.5, our simulations predict saturated ever, forL, smaller than\,, the dynamics is significantly
length of about 16 cm. This length compares rather well withmodified: The growth is suppressed, and it even saturates for
the one shown in Johnsaet al® (see also Fig. 1 We con-  small Ly~\. [see Fig. 2c)]. This slowing down of the
sider that it would be of interest to perform experiments forgrowth for L,<<A, points to a nontrivial behavior of the
even longer times in order to settle the question of existencsystem close to the bifurcation poibf=\.. ForD=0, L,
of steady-state patterns. If saturation is not observed in ex=\. appears to be a requirement for the growth saturation
periments, then apparently this effect can be obtained only iand for the existence of a nontrivial traveling wave. BEor
the (idea) case of a completely wetting fluid. >0, however, our numerical results imply that this traveling

The question of growth saturation is also addressed conwave solution is always admissible. A natural question to ask
putationally in the recent work by Erest al?® They report is whether there is something special about the0 case,
saturation of growth in their simulations of a flow down a and whether arbitrary smalD is sufficient to modify the
vertical plane, occurring at=150 (Fig. 14 in Ref. 20. This  long time dynamics. The answer to this question cannot be
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accurately reached based on numerical results alone, and will a)
be subject of our future worksee also Remarkl) below]. 24 | //,/ J LIS
To return now to comparison with the results reported in ol K\L\\u /\ @
Ref. 20, we note that the related simulations reported there _ J)] ) S \\) DT \1)
are performed using,~12 andb=0.05. From Fig. 1(a), sl ) /,é.( : ,/(/r/; P,
one can already anticipate that the range.g§, for which ‘ | ( ( ( ( ‘\&x%{{%?ﬁi\
growth stops, broadens &sis increased. This has been con- 05 ~ : 50
firmed by additional simulations. In particular, these simula-
tions show that, for the parameters as in Ref. 20, growth b)
saturation occurs. Correspondingly, the results presented here %] ‘ ‘(/‘,// e
and in that work are consistent. However, the fact that the 24t g ‘\(\g\l KK\&
results are qualitatively modified as the parametkgsand > 16} ‘ )/\) OO DD I D
b) are changed, shows that one has to be very careful with sl (//(( ((///
reaching any general conclusions concerning long time be- o \ | S————
havior of the flow. We note that in most of the laboratory 0 X 60
experiments, the domains are large, &slare small. From c)
our results, it follows that one should not expect growth satu- 48 - e
ration in the laboratory experiments of the flow down a ver- 40 ‘ Q> %} é’;>>) i
tical plane. Still, further research of this problem, both theo- 2 VI O SIS
retical and experimental, is definitely required. > f:: /<§%“(ff )C/ SSSSSS S
Remarks: o I —
(1) From the discussion in this section, it is obvious that % I 80

the saturation effect, and, in particular, the saturated length of _ _

the patterns, depends on a number of factors, most importafitG- 12- Snapshots of the contact linedat- 2 intervals forl., =X, =24 (a),

bein% D b andFI)_ our results for differend’s shown ipn Ly=No=32(b), andL,=\=48 (c). All other parameters are as in Fig. 4.
H H y .

Fig. 10 are obtained using a particular combination of

[Ly.b], and depend on these two parameters. Despite thigy| condition is symmetric with respect to the domain center
limitation, we consider that it is of interest to find the func- (y L,/2), these newly produced wavelengths are con-
tional dependence of the pattern length on the valu® of gt ined by the approximate requirement=L,/i, i
(i.e., the inclination angle, assuming all other parameters are.p 3 (This requirement is approximative because not
fixed). For this reason, we have performed additional simu-|| emerging\’s in any given simulation have to be the same.
lations, forD’s in the rangg 0,1], with the idea of estimating However, they are typically close to,,.) We note that Fig.
the pattern length fob—0 by extrapolation. We find that 12 shows a slightly faster growth of the finger in the middle
best agreement is provided by the power lawt—=)  of the domain forL,=32[Fig. 12b)], compared to the one
=CD™#, with C~25.74 andB~1.46. We note that this for Ly=24 [Fig. 12a)]. This can explained based on the
fitting function slightly overestimates the pattern lengths for|arger growth rate foh=16, compared ta=12. The fingers
largerD’s (D>1), while it approximates very well the re- centered aroungl=L,/2 grow faster in both cases than those
sults for smallerD’s. This fit predicts an infinite length for gt y=0L,, since they develop directly through the linear
D=0, i.e., flow down a vertical plane. Future experimentsgrowth mechanism from the initially imposed perturbations.
shall verify this prediction. Figure 1Zc) differs because the initially imposed perturba-
(2) An increase ofL, above\, (but still requiringAy  tion is completely removed; consequently, the growth of the
=L,), leads to a completely different effect. From LSA, we resulting patterns is slower. More discussion concerning non-
know that the growth rates of longer wavelengths are beinginear mode interaction follows in Sec. IV.
significantly reducedlsee Fig. 2c) for A\>\,]. Correspond- (3) The long time dynamics can be also influenced by
ingly, one expects that for a sufficiently laryg, nonlinear  the size of the computational domain in tkelirection. We
mode(self) interaction can lead to emergence of new modespbserve in the simulations that if the length of the pattern,
that are not imposed initially. Figure 12 shows precisely this_(t), becomes comparable tg , the saturation can occur.
effect. AsL, is increased, new modes develop. These mode®ne possible interpretation is thatlift)~L,, only a small
are characterized by shortéand more unstablewave-  part of the main body of the fluid is kept inside the domain,
lengths, i.e., separations between fingers. The particuldeading to a modified dynamics. The results we present here
mode that emerges is determined by the domain size. In Figor D=0 case are calculated usirig,=200; the (linean
12 we show three examples where the resulting modes agrowth of the pattern is followed until=240. If smaller box
given by A=L/2 for L,=24 in Fig. 12a) andL,=32 in  size, i.e.,,L,=100 is used, we observe the deviation from
Fig. 12b), and byA=L/4 for L,=48 in Fig. 12c). [Note linear growth att~130, whenL (t)~90.
that they scales in the part&)—(c) of this figure are differ- (4) The influence of the size d§ on instability for the
ent. In particular, the widths of the emerging fingers are thdlow down an inclined plane is similar to that of the flow
same in all cases shownSince our computations require down a vertical plane, with possibly less dramatic conse-
dh/dy=0 at the domain boundarieg€0,L,), and the ini- quences since the shape of the patterns is already triangular
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FIG. 14. (a) Snapshots of the contact line &it=2 intervals where initially
QM more than one mode is presemip(=2L,/i). (@ i=1,2, (b) i=1,4, (c) i
00 =1,2,3,4. All other parameters are as in Fig. 4.

FIG. 13. Snapshots of the contact linessat 2 intervals for four different
perturbations:ng;=2L, /i, i=4,3,2,1 for (@—(d), respectively. All other V. NONLINEAR MODE INTERACTION
parameters are as in Fig. 4. . . . .
In the first part of this section, we still analyze a narrow

system, characterized lhy,~\,, but with a few modes ini-
tially present. This configuration allows to gain better insight
into the nonlinear mode interaction. In the second part of this

instability, as expected. We note that for larger value® of section, Sec. IV B, we extend the discussion to large systems,

the instability can be completely suppressed by using a th|c¥"here|‘ >N\m, So that the results can be directly compared
precursor film, in agreement with the weakly nonlinear resullm experiments.
by Kalliadasis:® and with experimental results by Veretenni-
kov et al® and Ye and Chartd for the flow down a(prewet-
ted inclined plane. In particular, based on LSA in the limit To simplify the discussion, here we consider only the
of small wave numbers, it is shown that one can define dow down a vertical planeld=0). Figures 13 and 14 show
stability boundary i D,b] space, that separates stable froman example of how the initial perturbation influences the
unstable situation. They obtainD ;= — C logb, whereC development of instability. We still usé,=16, but im-
=0.88. This logarithmic dependence is consistent with thepose perturbations characterized by differant=2L, /i,
general statement that the macroscopic fluid behavior de=1,2,3,4(these wavelengths are permitted by the boundary
pends in a logarithmic way on any small length scale intro-conditions aty=0,L). Fori>4, the resulting perturbations
duced at the contact lin&:?|nterestingly enough, despite are characterized b)y0,<)\ from LSA [see Fig. 2)], and
the fact that our simulations solve the fully nonlinear prob-they die away for very short times, resulting in a straight
lem for larger wave numbers, we recover approximatelycontact line.
logarithmic behavior as in Ref. 17, with a similar valuef Figure 13 shows the evolution when only one mode is
(5) In this work, we do not discuss the development ofinitially present. Figure 1@ shows the slow growth of a
instability for very small inclination angles, such as=1.8°  weakly unstable mod&,=8; Figs. 13b) and 13c) follow
in Johnsoret al.? 4° in de Bruyn? or 8° in Ye and Chang!  the growth of more unstable modag=32/3,16. All these
Experimentally, instability is observed for these inclinationresults are as expected from LSA; the only difference be-
angles; on the other hand, LSA predicts stabffitite and  tween them is in their growth rates. Figure(dB on the
Changd’ suggest that the continuous spectrum of the lineaother hand, shows the effect of the nonlinearity on the devel-
operator governing the dynamics in the linearized version obpment of the instability. Initially, only the mode,=32 is
Eq. (5) has to be included to properly account for the influ- present, with peak ay=16. This mode is, however, very
ence of the surface inhomogeneities. Our work on addressingeakly unstable, and leaves enough space in the domain for
this problem is in progress. other unstable modes to develop, similarly to the results

(viz. Fig. 7 for D=0 case. Largerb’s lead to decreased

A. Narrow domain: L ,~\p,
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shown in Fig. 12. In this particular case, the boundary con- D=0
ditions dictate development of the moNe-16. The initially
imposed asymmetry of the probletwith respect to they % SRS
=8 line) results in an asymmetric situation for longer times, 80k S=S=>5>
with the pattern ay=16 ahead of the one &t=0. g ~——=5>>
Figure 14 shows snapshots of the contact line where 64r %’
more than one mode is superimposed=a0 in the domain > a8k =S5 S S S5O
of width L,=16. In Fig. 14a), modes\,= 16,32 are initially :
present; we see that the mode with larger growth (atel6 32F @(3(?((? 222200
in this casg¢ wins, while the weakly unstable mode=32 ; D2 220>
completely disappears. The initial asymmetry reflects itself 16;_ %Q&K\\R
i i [ OSSRy
only in a small shift of the pattern to larggrs [compare o0 20 Ny 20 50

with Fig. 13c)]. Figure 14b) shows an example of a situa-
tion where two |n|t|aII_y present, W?akly unstable mOdQ)S FIG. 15. Snapshots of the contact linedt=2 intervals for the flow down
=8,32, completely disappear, while the asymmetric mode vertical plangL,=96, N=50, b=0.01, Ax=0.2, Ay=0.5).
A=16 appears. In Fig. 1d) we follow the competition of all
four modes. The outcome is similar to Fig.(kBwhere only
the mode\ ,=32/3 is initially present; however, the presenceonly means of linking experiments with theory. Indeed, in-
of other moded(in particular,\;=16) leads to a modified spection of Fig. 15 recovers results which compare favorably
growth of the pattern centered aroupe 7. with experimental ones. One of these results is a natural
Obviously, more work is needed to understand the mod@onuniformity of the emerging’s—the system chooses the
interaction on a more fundamental level. Weakly nonlinearmost favorable configuration, that results from the nonlinear
analysis, presented recently by Kalliada%is a promising coupling between the initially present modes, modified by
starting point in this direction. The main purpose of the dis-the limitations imposed by a finite system size. Similar
cussion presented here is to illustrate the nonlinear modgpread of emerging’s is also observed experimentally, in
interaction, and to provide some insight into experimentallyboth constant volume and constant flux configuratfoh.
observed patterns. For example, one question raised by ekurthermore, coarsening effects can be seen in Fige1p,
periments is the source of nonuniform distribution of pat-compare the profiles dt=10 andt=30 for y~70). If two
terns, and their unequal lengtf®3%Here, we see that these fingers initially start developing too close to each other, the
effects can be a consequence of the nonlinear interaction ddrge curvature in thg direction apparently forces them to
just a few modes, limited to a narrow computational domainmerge. We note that the tips of the fingers for late times
move with constant velocity that is larger than teenstant
B. Wide domain: L, >\, velocity of the rootgcompare the distance between two con-

In this section we present results for the instability inngxi:i:tz?gigr?tss'lg'gﬁ. %ﬁ?}ge:;?gd'%%yrﬁ;hne;enfI;? o
wide domains, whose size compares well with the exper'g » Simiiarly W ! g

|_
mental ones. We model experimental noise by modifying th@‘0 results from Sec. Il A.

position of the fluid front through a perturbation of the form Fl_gurg 16, wherd_¥=;92, shqws that an increase in
domain size does not significantly influence the development

N
X{(Y)=X0— 2, Ajcog2my/\gy), (16)
=1 D=0
where\yj=2L,/i as explained above, ard is the ampli-
tude of theith mode, chosen randomly in the range 192
[—0.1,0.1. In the limit N—c°, this initial condition is the : }»m
Fourier expansion of a smoothly corrugated contact line. The 160 e
simulations are typically performed usirg,=96, N=50, i oSS
and Ay=0.5. Additional simulations confirm that the main 128 §§>> ——— .
features of the results are independent of the domain size, the - S S
grid resolution, and the number of modes imposet-0. > 96fF iﬁ?
Figure 15 shows the snapshot of the contact line as : QT -
the fluid film flows down a vertical planesee Ref. 21 for 64 ><35“§ — _
the contour plots In agreement with LSA"® and experi- s & A -
ments*® the short\’s disappear quickly, since these are lin- 3ok @"é";‘s ===
early stable. For later times, long finger-like rivulets form, as X D e
reported by Johnsdrand Johnsoret al® (see also Fig. 11 0: . iﬁ%f L
The emerging\'s (separation between the fingeege close 0 20 40 60
to A,,. However, LSA applies only to short times and cannot X

predict the behaVior. of the SyStem Wher_‘ the .perturbationsml 16. Snapshots of the contact linedh=2 intervals for the flow down
become large. At this point, nonlinear simulations are thea vertical plangL,=192, N=100). All other parameters are as in Fig. 15.
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FIG. 18. Snapshots of the contact linedt=2 intervals for the flow down
a vertical plane. Herb=0.1; all other parameters are as in Fig. 15.

FIG. 17. 3D contour plot of the fluid at the last time shown in Fig. 15.
Next, we proceed to model the flow down an inclined
plane. Figure 19 shows the representative dasel (see

. . L . also Ref. 21 The emerging patterns strongly resemble the
of instability. There is still a relatively large spread of emerg'experimental results shown in Fig. 1 for<90°. Their shape

ing wavelengths, as in Fig. 15. Careful inspection of Fig. 16|$ now triangular, and the roots are almost shrunk to a point.

shows, however, an additional effect. The patterns that d The growth of the patterns is slower comparedte 0, and
velop closely spaced are characterized by a slower gromﬂ’]eir separations and widths are increased, even in terms of

(e.g., the patterns aboytf32,128,169, in Fig. 16 Similar the length scale («) (note that Fig. 19 shown the snapshots
effect can be also seen in the experimental results shown i

Fig. 1. An explanation of this effect follows by extension of R ot=5 intervals, compared to Fig. 15 whepe=2).

the narrow domain results from Sec. IV to this setting. Figure Examination of Fig. 19 for late times shows that a
: ' steady-state configuration has been reached. This result says
11(b) shows that for smallL,, growth rates decrease. What y 9 Y

A . o that the growth saturation is not an effect related to artifi-
governs the growth rate of individual fingers in Fig. 16 ap'cially narrow computational domainec. 1), but it also

%%pears in domains that compare well with the experimental
ones(such as the one shown in Fig). Future careful ex-
yeriments should give a definite answer to the questions re-
ated to the existence of nontrivial traveling waves.

Figure 20 shows the 3D fluid profile for this case. The
Figure 17 shows a 3D contour plot of the fluid at the Iastﬁis\;llgg;vrr:dsise rzizln;ﬁj;:él\ijs g;?nf;.n\c/\?: aclcs)??;rédtrtlg the

;ume sh?mn Ln F'g'h;ls't:;he th!ﬁknes.z of the fluid ;15 mu(Izlhformation of valleys across the emerging patterns, as ob-
arger at the tips, while the capillary ridges are much smaller . - . by Johnsoet al?

gltogh; rgots;.o (':rrr?;tz dsictu;n'gll I'F;]rc;)rfltl:ZI Ogathesfm.?aerrls foart]hge It is interesting to observe that both an increas® afnd
y approxi y a Cylindri P, simifarly an increase ob influence the emerging wavelengths in a

profiles obtained in narrow domains, see Diez and Koftlic.
Since some experiments are performed on a prewetted
plane with different values of the precursor thicknésg.,

the same role as the domain size in Fig(hl1Alternatively,
this effect can be explained by a conservation of mass arg
ment. The length of a pattern depends on the width of th
region that supplies the fluid: Thus if patterns are close, eac
of them has less fluid available for its growth.

Veretennikovet al?), it is of interest to see how differebts D=1

influence our results in the case of largg. This result is 96 -

shown in Fig. 18. A large precursor leads to emerging pat- B

terns that are more rounded compared to like0.01 case 80F

(see Fig. 15 and their growth is much slower, as expected 64E

based on the simulations in narrow computational domains. -

Further, the average distance between the patterns is in- > 48F

creased, as anticipated from LSA results, which show a shift 325_

of the mode of maximum growth towards longer wave- :

lengths as is increased®!>?*The shapes of the patterns in 16

this figure are similar to the ones obtained by Kalliad&sis E S22 O
using weakly nonlinear analysis for a similar valuebofAs 00 20 40 60
pointed out by the author, his approach is not valid for small %

b's, so the CompUtationf_il results obtained U_Shng 0.01  FiG. 19. Snapshots of the contact line for the flow down an inclined plane
(e.g., Fig. 1% cannot be directly compared to his results. D=1 in §t=5 intervals. All other parameters are as in Fig. 15.
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h TABLE II. The table gives inclination angle, nondimensional parameter

D, calculated in-plane length., computed wavelengths of the patterns,
Neomp: €Xperimentally measured wavelengths,,, [from Johnsonet al.

(Ref. 8] computed widths of the patternd/.,,,, and experimentally mea-
sured widths We,,,, from Johnson(Ref. 7 [the widths fora=27.9° and

13.9° are also given in Johnsen al. (Ref. §]. Computed results report the
average and one standard deviation; experimental results give average and
reported/estimated uncertainty. All lengths are given in centimeters.

D=1

a D Xc A comp A exp Wcomp Wexp

90° 0 0.15 1.&04 2.0:03 0.8:01 0.7#0.1
27.9° 0.67 021 3204 3.0:04 21*+0.2 2.0x0.2
13.9° 134 028 4505 4.0:-05 3.2:02 3.0-03

(one example is reproduced in Fig. dhow a well defined
transition from rounded triangular patterns for smallito
finger-like rivulets for the vertical plane, in complete agree-
ment with the computational results presented here. To facili-
tate a quantitative comparison with these experiments, we
similar fashion: In both cases, the typical emergign- have performed additional simulations with the particular set
creases. Other characteristics of the emerging patterns a@f, parameters used in Refs. 7 and 8. We choose to model
however, very different, in particular the shape, and the'Fluid B” as reported in Ref. 8, since it is characterized by a
widths of the roots. small contact angle. This fluiB0% glycerin in water has
From additional simulations similar to the ones shown indensity p=1.21g/cd, kinematic viscosityr=0.69 cnf/s,
Figs. 15 and 19but characterized by different domain sizes and surface tensiony=66 dyn/cm. The inclination angles
and different seeds for the random number generate  that we reproduce here awe=90°, 27.9°, and 13.9°. The
extract results for the averagés, and for the widthsW's, of thickness of the fluid far behind contact line is not directly
the patterngfull width at half length. These are computed at reported for all inclination angles; however, we can ob-
late times, when they are almost time independent. We obtaif@in this quantity from the reported value of Reynolds
number, Re, which is defined aRe=Q/v, whereQ is
Np-o=11.852.6, Ap-,=16.0v2.7, A7 the volumetric flow rate per unit width. This givels,
where the average and one standard deviation are reported[3Rev?/(gsina)]®, so we obtainh,=0.057, 0.074,
The trend of increase of the emerging wavelength®as  0.092(cm) for «=90°, 27.9°, 13.9°, respectively. Using Eq.
increased is consistent with LSA. The average values aréd) we calculate the corresponding length scales Risdfor
smaller than predicted by LSA,~14 for D=0; how- these three angles; see third column of Table IIl. We note that
ever, the difference is less than one standard deviation. Aghe results presented Refs. 7 and 8 show very little depen-
suming that this difference is real, the results of Sec. IV Adence on Reynolds number, implying that the inertial effects
suggest that the nonlinear interaction among the competinglay only minor role in that experimental setup.
normal modes is responsible; nevertheless, we believe that Figure 21 shows contour plots of the finger profiles for
further research is needed to completely clarify this issuethese three angles when the fronts have traveled the same
We note that recently, Ye and Chah@nalyzed the effect of distance down the incline. The results in this figure are given
noise generated in the prewetted surface on the emergirig dimensional units, using the scales obtained above, so that
wavelengths, and also observed the emergence of wavéiey can be compared to the experiment shown in Fig. 1. We
lengths shorter than predicted by LSA. That work, howevernote that the direct comparison is limited by a few factors:
is concerned with the constant volume flow, where thinning(1) The width of our computational domain is about a half of
of the fluid may have important consequenfsse also Re- the experimental ond2) the initial conditions are different,

FIG. 20. 3D contour plot of the fluid at the last time shown in Fig. 19.

mark (5) below]. since the size of the initially imposed perturbations in the
The widths of the patterns are given by simulations is much larger than any microscopic noise
resent in the experiment, arid) the experimental results
Wp_o=5.5+0.4, Wp_;=11.2£1.0. ag P P 8) P

are shown at much later times, leading to longer patterns
We note a significant increase Wf's asD is increased. Also, than those shown in Fig. 2(Note the patterns shown in Fig.
W’s are much more uniform than’s, as observed in the 21 have not yet reached their saturation lengtisill, the
experiment$:® main features of the results agree very well. In both experi-
In order to directly compare computational results withment and simulations there is a clearly defined transition
experimental ones, we now proceed to model a particulafrom rounded triangular patterns for smaller inclination
experimental situation. We concentrate on the works byangles to finger-like rivulets for the vertical plane. Bsis
Johnsohand Johnsoet al® that report experimental results increased, the instability is weaker, both in experiments and
concerning the influence of the inclination angleon the  computations. Also, the emerging wavelengths increase.
shape of the patterns in a constant flux flow. Their results  The length scalg. (third column in Table I} allows for
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a) h depend on the domain size, and the relatively large spread of
2.0 N\’s is not being reduced as the domain size is increased. This
1.7 shows that the experimentally observed spread’®fis not
15 due to, e.g., boundary effects, but it is an intrinsic property of

12 the system.
(4) Based on the constant volume experimental results,

09 Jerret and de Bruyrpredict that the pattern width scales as
08 W~ (sina) %8 This fit, however, does not appear to be
04 consistent with neither experimental results by Johnson
0.1 et al.® nor the computational results presented here, showing

another significant difference between constant volume and
constant flux configurations.

(5) In this work, we analyze the instabilities that develop
after the contact line—fluid front is perturbed. In physical
experiments, triggering perturbations could be also propagat-
ing from the precursor film in front of the main body of the
fluid. These perturbations were analyzed recently by Ye and
Chang!’ That work, however, addresses very different setup
where constant volume of the fluid is assumed, so that the
fluid is thinning behind the front as time progresses. This
thinning introduces additional set of effects that are beyond
the scope of this work.

)

X (cm

16

Now we briefly discuss the influence of the precursor
perturbations in the constant flux case. From 1D
simulation€? we know that the height of the capillary ridge,
which is related to instability development, can be modified
by the perturbations of the precursor. Here we show that
localized 2D perturbations could really lead to the onset of
instability. To illustrate this point, Fig. 22 presents how the
perturbationgshown in Fig. 22a)] influence the unperturbed
fluid film. These perturbations of the precursor are character-
ized by their extend in th& andy directions(2.0+1.0), x
FIG. 21. Contour plots of fluid profiles faig) D=0; (b) D=0.67, and(c) coordinate(12+1.0), the distance between the perturbations
D=1.34, plotted when thg ﬂgid traveled the same distance downslope. Aln the y direction (7+1.0), and the deptl’[(O.SiO.l)b]. In
other parameters are as in Fig. 15. Note thatxltendy scales are in cm, " . " .
and fluid thicknessh, is in mm. addition there is a smooth transition region around each per-

turbation. The parameters are chosen randomly in the given

range; we do not present here a systematic study of the in-
a more quantitative comparison between the computed arféience of these parameters on the instability, but just show
experimental results. We calculate the average dimension#hat the instability can be induced by this type of perturba-
wavelengths and widths of the patterns, and compare thefions. They are distributed close to each other inytiirec-
directly with the experimental results shown in Fig. 1. Tabletion in order not to perturb the system with the wavelengths
Il shows that the agreement of the calculated and experimersiose to the wavelength of maximum growth from LSA; by
tal values is remarkably good. perturbing with relatively high-frequency noise, we force the

Remarks: system to decide on emerging wavelengths on its own.

(1) In this section, we do not discuss in detail the issues _ The Similarity of the emerging patterns presented in Fig.
related to length saturation, since the main features of thé2 and the earlier results obtained by perturbing the contact
results are similar to the ones discussed in Sec. IV. line (i.e., Fig. 15 clearly shows that the precise mechanism

(2) As noted above, the dimensional wavelengths ar®f imposing perturbations is not important. In particular, the
also increasing aa is decreased. From Table II, the averageemerging wavelength@listance between the finggrsre ap-
values for these wavelengths are given approximately byroximately the same as obtained beffvez. Figs. 15, 16,
A=12,15,16 fora=90°, 27.9°, 13.9°, respectively. Sy and Eq.(17)]. Analogous results are obtained for flows on an
significantly influences the emerging wavelengths, at least ifncline, whereD#0. We emphasize that constant volume
the constant flux case. This is in contrast to the experiment8ow on real surfaces, wherg) fluid is continuously per-
by Huppert performed with a constant fluid volume, which turbed and(ii) fluid is thinning, opens additional set of
suggest thatdimensionless\’s should not depend on incli- questions related to the positioning of the perturbations,
nation angles. as pointed out in Ref. 17. We will address this questions

(3) The results for averages reported in Table Il do not elsewhere.
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for the flow down an inclined plane, with the steady-state
lengths of the pattern depending on the precise values of the
flow and fluid parameters. It would be of interest to perform
careful experiments to verify this prediction. Complementary
theoretical research should show existence and stability of
these steady solutions. Our computational observation that
the existence of these solutions depends on the parameter
D(«), and on the size of the computational domain, implies
a rich structure of this dynamical system that should be ana-
lyzed in a more fundamental manner. The results presented
here provide useful guidance in this direction.

W:’W M‘H i

|
L W '
-

o

% r b In this work, we concentrate on the situation where the
NS o fluid thickness is kept constant far behind the apparent con-

80r e tact line, since this configuration allows for understanding of

64k LS — - many features of the problem without the additional compli-

b S cation introduced by the thinning of the fluid in the constant
5; S volume case. In the present case, we show that the exact

32} - >/> _— mechanism of imposing perturbations in the system is not of

16k X B} major importance; in particular, we obtain similar emerging

[ S =5 > .

L . wavelengths independently on whether we perturb contact

% 20 X 40 60 line, or the precursor film. We continue our research of both

constant volume case, and of the dynamics of partially wet-
FIG. 22. Flow over perturbed precursor. Pt shows(magnified region  ting fluids, with the hope of understanding the interplay be-
of the precursor region that is perturbed; the front of the main body of thetWeen fluid wetting properties, gravity, and fluid thinning

fluid is shown to the rightaroundx=7). Note that the scale of the plot is . . .
significantly extended in the direction relative toy; average shape of the that determines the nature of the instability and the surface

perturbations is circular. Pafb) shows the snapshots of the contact line at COVErage.
St=2 intervals. Note the similarity to the results shown in Fig. 15. All the
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