
PHYSICS OF FLUIDS VOLUME 13, NUMBER 11 NOVEMBER 2001
Pattern formation in the flow of thin films down an incline:
Constant flux configuration

L. Kondica) and J. Diezb)

Department of Mathematical Sciences and Center for Applied Mathematics and Statistics,
New Jersey Institute of Technology, Newark, New Jersey 07102

~Received 22 January 2001; accepted 1 August 2001!

We present fully nonlinear time-dependent simulations of a thin liquid film flowing down an
inclined plane. Within the lubrication approximation, and assuming complete wetting, we find that
varying the inclination angle considerably modifies the shape of the emerging patterns:
Finger-shaped patterns result for the flow down a vertical plane, while saw-tooth patterns develop
for the flows down an inclined plane. However, in all of our simulations, the roots always move,
indicating that the shape of the patterns is not necessarily related to the surface coverage, a
technologically important feature of the flow. Furthermore, we find that triangular steady-state
patterns may be produced for the flow down an incline, while the fingers typically grow in length
for all explored times. We find quantitative agreement with reported experiments, and suggest new
ones. © 2001 American Institute of Physics.@DOI: 10.1063/1.1409965#
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I. INTRODUCTION

The flow of thin films is relevant in a number of differen
fields, such as engineering~microchip production!, biology
~lining of mammalian lungs!, and chemistry~flow of surface
active materials!. These flows can be driven by gravitation
~flow down an inclined plane!, centrifugal~spin coating!, or
Marangoni forces. In all these different settings, the fro
dynamics is not completely understood. In many situatio
the fluid fronts become unstable, leading to finger-like riv
lets, triangular saw-tooth patterns, or, in the case of sur
tant flow, dendritic tip-splitting petals. Very often, these i
stabilities are undesirable in technological applications, si
they may lead to the formation of dry regions. From a mo
fundamental viewpoint, one wishes to understand the
namics of these strongly nonlinear systems, and reach
eral conclusions concerning instabilities.

In this work, we concentrate on perhaps the simples
these problems, the flow of a thin film down an incline
plane. Experiments are usually performed by releasing a c
stant ~fixed! volume of fluid at the top of an incline. Afte
some time, the initially straight contact line, where liqui
gas, and solid phase meet, becomes unstable with respe
transverse perturbations. It has been conjectured that thi
stability is related to the formation of a capillary ridge in th
fluid profile, just behind the advancing contact line. Wh
the initial stages of the instability process are rather w
understood, as outlined below, it is still not clear what det
mines the long-time nature of the instability, in particular t
shape of the patterns and the degree of surface coverage
work by Silvi and Dussan,1 expanding on the pioneer wor
by Huppert,2 shows that the wetting properties of the flu
play an important role: They obtain triangular patterns a
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complete surface coverage for an~almost! completely wet-
ting fluid, while finger-shaped patterns and partial surfa
coverage result for a partially wetting fluid. Jerret and
Bruyn3 and De Bruyn4 obtain results consistent with Silv
and Dussan1 and Huppert,2 and further quantify them by
measuring the manner in which the patterns grow. More
cent works by Veretennikov, Indeikina, and Chang,5 Hock-
ing, Debler, and Cook,6 Johnson,7 and Johnson, Schluter
Miksis, and Bankoff8 show that the problem is more compl
cated than previously thought. Veretennikovet al.5 perform
experiments on both dry and prewetted surfaces and ob
different patterns in these two cases. They also report th
partially wetting fluid characterized by a large contact an
can form an overhanging ‘‘nose’’ at the contact line, in co
trast to the ‘‘wedge’’ profile typical for more wetting fluids
Hocking et al.6 observe both triangular and finger shap
patterns with a single fluid–solid configuration. Johnson7 and
Johnsonet al.8 modify the experimental setup to allow for
continuous flow of fluid, referred in what follows as ‘‘con
stant flux’’ configuration, compared to ‘‘constant volume
in all other experiments. An example of their experimen
results is shown in Fig. 1: For a given fluid–solid combin
tion, changing the inclination angle of the substrate can h
significant effects on the shape of the emerging patte
More details about the experimental parameters are give
Sec. IV B.

Theoretical analysis of the problem requires, in the fi
place, resolving the so-called ‘‘contact line paradox.’’ As it
well known, assuming standard no-slip boundary condit
at the contact line leads to a multivalued velocity field the
~see, e.g., Dussan,9 de Gennes,10 or Haley and Miksis11!.
This problem is typically approached by either relaxing t
no-slip boundary condition, or assuming the presence o
thin precursor film in front of the propagating contact lin
Both approaches introduce a short length scale into the p
lem, thus requiring analysis of the influence of this addition
parameter on the instability.

il,
8 © 2001 American Institute of Physics
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3169Phys. Fluids, Vol. 13, No. 11, November 2001 Pattern formation in the flow of thin films
The dynamics of the main body of the fluid film is typ
cally approached within the framework of the lubricatio
approximation. Goodwin and Homsy12 show that this ap-
proach is appropriate for completely wetting fluids, while

FIG. 1. Patterns formed in constant flux experiment by Johnson~Ref. 7!.
The fluid is glycerine–water mixture~more details about this experimenta
setup are given in Sec. V B!, and the inclination angle is~from top to
bottom! a57.2°, 13.9°, 27.9°, and 90.0°. The profiles are shown after
fluid traveled the same distance down an incline.~Reproduced with permis-
sion of the author.!
Downloaded 16 Oct 2001 to 128.235.249.42. Redistribution subject to A
the case of partially wetting fluids some of the assumptio
of the lubrication approach might be violated at the cont
line. López, Miksis, and Bankoff13 analyze the effect of ne
glected inertial terms, and show that their influence on
instability is rather weak, even for O~1! Reynolds numbers
Consistently, the experiments by Johnsonet al.,8 where Rey-
nolds number of the flow is systematically varied, show re
tively little effect of fluid inertia on the pattern formatio
process.

An initial insight into the instability results from the lin
ear stability analysis~LSA!, within the framework of the
lubrication approximation. Troianet al.14 perform LSA for
the flow down a vertical plane and show that there is a b
of unstable modes, with short wavelengths stabilized by s
face tension. Bertozzi and Brenner15 extend the analysis to
the general case of the flow down an inclined plane, a
show that the normal component of gravity~hydrostatic
term! shifts the mode of maximum growth to longer wav
lengths, and also tends to stabilize the flow by decreasing
growth rate of the instability. While a basic agreement w
the experimental results has been reached~e.g., the observed
separation between the tips of the patterns agrees reaso
well with the wavelength of the mode of maximum growt
lm), there are a number of unanswered questions. Most
portantly, LSA is limited to the early times evolution of
single mode, so that the questions concerning the long t
evolution and the nonlinear mode interaction cannot be
dressed. Some of these restrictions have been relaxed
weakly nonlinear analysis by Kalliadasis.16 That work ex-
plains the contact line instability as a phase instability rela
to the translational invariance of the system in the strea
wise direction, and predicts a strong influence of the prec
sor film thickness: A large precursor film suppresses insta
ity, in agreement with the experimental results
Veretennikovet al.5 and Ye and Chang.17

There have been relatively few works that approach
this problem from the computational point of view. The re
son for this is that, even within the framework of lubricatio
approximation, there are still significant computational o
stacles to overcome. Some of these are the stiffness in
duced in the evolution equations by surface tension, and
need to resolve short length-scales close to the advan
contact line. The simulations by Schwartz18 concentrate on
the case of a completely wetting fluid, and show that tria
gular patterns result in that case. Moyle, Chen, and Hom19

develop more general simulations of partially wetting fluid
showing that the shape of the patterns can be modified
fluid wetting properties. Very recently, Eres, Schwartz, a
Roy20 perform the simulations where they appear to reac
nontrivial traveling wave~i.e., a steady flow configuration
characterized by a nonuniform structure in the spanwise
rection! for the flow of a completely wetting fluid down a
vertical plane.

In this work we concentrate on the flow of a complete
wetting fluid, and analyze the influence of the inclinatio
angle on two most relevant aspects of the instability: Sh
of the patterns, and surface coverage. An important mot
tion for analyzing the effect of this particular paramet
comes from the fact that previous simulations of this pro

e
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3170 Phys. Fluids, Vol. 13, No. 11, November 2001 L. Kondic and J. Diez
lem have been performed only for the flow down a verti
plane, while the experiments concentrate on the flow do
an ~sometimes very slightly! inclined plane. In an earlie
work, Diez and Kondic21 present the basic outline of th
influence of the inclination angle. That work is extended h
to provide a more complete picture of the instability mech
nism, including the discussion of possible formation of no
trivial traveling waves. To further facilitate comparison wi
experiments, we perform simulations in large computatio
domains that compare well with the experimental ones
these simulations, we do not enforce the emerging wa
lengths, as done previously,18–20 but let the system choos
the separation between patterns on its own. We note tha
the experiments it is not obvious what kind of perturbati
generates the instability. It might develop due to noise p
turbing either the contact line itself, or the fluid–substra
interaction, or the body of the fluid far behind the conta
line. Influence of the perturbations on the fluid–solid int
action has been recently analyzed by Bertozzi and Brenn15

Ye and Chang,17 and Kondic and Bertozzi,22 with the main
goal of understanding the instabilities at small inclinati
angles. In this work we concentrate on the effects that p
turbations of the contact line itself have on the developm
of the instability, and consider perturbations of the substr
only briefly at the end of Sec. IV. For clarity, we limit th
discussion to the situation corresponding to the experime
setup of Johnsonet al.,8 where there is a constant flux of th
fluid far behind the contact line. Correspondingly, we do n
discuss the issues related to thinning of the fluid that occ
if a constant volume of fluid is let to flow down an incline
The main goals of the present work are to~1! establish quan-
titative connection between theoretical work and experim
tal observations, and~2! provide computational results tha
will serve as a guide to future research on more fundame
issues, such as nonlinear mode interaction, and the pos
existence of nontrivial traveling wave solutions.

This paper is organized as follows. First, in Sec. II w
explain the main features of the theoretical approach and
numerical scheme. In Sec. III we then present the result
the one-dimensional~1D! simulations, where the fluid fron
is assumed to be straight in the transverse direction.
results of the simulations in domains whose lateral size
close to the wavelength of maximum growth and equal to
perturbation wavelength are presented in Sec. IV, where
also analyze the influence of the parameters~in particular,
precursor film thickness and inclination angle! on the long-
time dynamics of the evolving patterns. Next, in Sec. V,
study the effects of the domain size and of the nonlin
mode interaction on the resulting patterns. The narrow
main results allow for a better insight into the fundamen
issues related to the instability, and the results of the sim
tions performed in wide domains allow for direct comparis
with experimental observations. Finally, Sec. VI is devot
to conclusions and final remarks.

II. FORMULATION OF THE PROBLEM AND
NUMERICAL METHODS

Within the framework of the lubrication approximation
the velocity of the fluid is depth-averaged over the thickn
Downloaded 16 Oct 2001 to 128.235.249.42. Redistribution subject to A
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of the film ~see, e.g., Greenspan23!. Following this approach,
one obtains the average fluid velocity,v5(u,v),

v52
h2

3m
@¹p2rg sina i#, ~1!

where¹5(]x ,]y), h is the fluid thickness,p is the pressure,
m is the viscosity,r is the density,g is gravity, anda is the
inclination angle of the plane of the substrate. The coordin
frame is chosen so thati points down the incline, andj is the
transverse direction in the plane. We note that Eq.~1! as-
sumes no-slip boundary condition at the fluid–solid int
face. The pressure includes the hydrostatic component,
the contribution following from the Laplace–Young boun
ary condition at the fluid–air interface

p52g¹2h1rgh cosa, ~2!

whereg is the surface tension. Assuming fluid incompres
ibility, the continuity equation gives

]h

]t
52¹•~hv!

52
1

3m
¹•@gh3¹¹2h2rgh3¹h cosa1rgh3 sina i#.

~3!

Thus, the lubrication approximation reduces Navier–Sto
equations to this nonlinear fourth order partial different
equation that governs the time evolution of the film thickne
h(x,y,t). To balance viscous and capillary forces in Eq.~3!,
we scaleh by the fluid thickness far behind the contact lin
hc , and define the scaled in-plane coordinates and the t
by (x̄,ȳ, t̄ )5(x/xc ,y/xc ,t/tc), where

xc5S a2hc

sina D 1/3

, tc5
3m

g

a2xc

hc
2 sina

, ~4!

and a5Ag/rg is the capillary length. The velocity scale
chosen naturally asU5xc /tc , and the capillary number is
defined asCa5mU/g. Using this nondimensionalization
Eq. ~3! for h̄5h/hc is given by~dropping the bars!

]h

]t
1¹•@h3¹¹2h#2D~a!¹•@h3¹h#1

]h3

]x
50, ~5!

where the single dimensionless parameterD(a)
5(3Ca)1/3cot(a) measures the size of the normal comp
nent of gravity. We note that the lubrication approximati
requires the slope of the free surface to be small; assum
slopes of O~1! in terms of our nondimensional variables, th
implies@(hc /a)Asina)]2/3!1.14 For smalla’s, this condition
is always fullfiled; however, for largea’s, it is valid only for
very thin films, such as those in Johnsonet al.,8 where
hc /a'0.2. We concentrate on this situation and assume
the rest of this work that the lubrication approximation
valid.

As mentioned in the Introduction, all the theoretical a
computational methods require some regulariz
mechanism—either assumption of a small foot of fluid
front of the apparent contact line~precursor film, see the
works by Troianet al.,14 Bertozzi and Brenner,15 or Spa and
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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3171Phys. Fluids, Vol. 13, No. 11, November 2001 Pattern formation in the flow of thin films
Homsy24!, or relaxing the no-slip boundary condition
fluid–solid interface~see e.g., Greenspan,23 Dussan,26 or
Hocking and Rivers27!. Diez, Kondic, and Bertozzi28 have
recently performed an extensive analysis of the comp
tional performance of these regularizing mechanisms app
to the spreading drop problem. In that paper it is shown t
the results are rather insensitive to the choice of the mo
consistently with, e.g., Spa and Homsy.24 However, the com-
putational performance of the precursor film model is sho
to be much better than that of various slip models. For t
reason, we also use a precursor film of thicknessb ~scaled by
hc! as a regularizing method in this work.

The computational domain is chosen as a rectangle
fined by 0<x<Lx and 0<y<Ly which is divided intoNx

3Ny node points (xi ,yj ) with i 51, . . . ,Nx and j
51, . . . ,Ny . Equation~5! is then discretized in space using
central finite difference scheme leading to the following s
tem of equations forhi , j @that is, the numerical approxima
tion to h(xi ,yj ,t)#

dhi , j

dt
1 f i , j50; i 51, . . . ,Nx ; j 51, . . . ,Ny , ~6!

where f i , j is a nonlinear operator which depends on the v
ues ofh at the neighboring grid points.

Let us concentrate for a moment on the capillary ter
and define the diffusivityD5h3. To obtain a numerical ap
proximation for f i , j , we needDi 61/2,j and Di , j 61/2. These
quantities can be obtained by interpolation. While there
various~second-order correct! ways in which this interpola-
tion can be done, Zhornitskaya and Bertozzi29 and
Zhornitskaya,30 building upon the work by Bernis an
Friedman,31 show that one particular interpolation leads to
scheme which is positivity preserving, i.e., the soluti
which is strictly positive fort50 preserves this property fo
all times. Diez et al.28 compare the performance of th
scheme to the one based on standard interpolation, and
that it has significant computational advantages. We also
this scheme here, and interpolate the diffusivityDi 11/2,j by

Di 11/2,j5H hi 11,j2hi , j

gi 112gi
; hi 11,jÞhi , j

hi
3 ; hi 11,j5hi , j

, ~7!

where g(h) is defined byg9(h)51/D(h). Analogous ex-
pression is used forDi , j 11/2.

The two gravitational terms in Eq.~5! are discretized
using standard centered finite differences. In the nor
gravity term we use

~h3! i 11/2,j5
hi 11,j

3 1hi , j
3

2
, ~8!

with analogous expression for (h3) i , j 11/2. In the parallel
gravity term we discretize as

S ]h3

]x D
i , j

'
1

4Dxi
@~hi 11,j

2 1hi , j
2 !~hi 11,j1hi , j !

2~hi , j
2 1hi 21,j

2 !~hi , j1hi 21,j !#. ~9!
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a-
d

at
l,

n
is

e-

-

l-

,

e

nd
se

al

The boundary conditions are chosen to model cons
fluid flux, F5hv, far behind the contact line. To this effec
we set the boundary condition atx50 as]Fx /]x50 for 0
<y<Ly , whereFx5hu is thex-component ofF. The same
boundary condition is also applied atx5Lx . Thus,h1,j as
well ashNx , j ( j 51, . . . ,Ny) remain constant in time. This is
enforced by settingf 1,j5 f Nx , j50 @see Eq. ~6!#. At the
boundariesy50 andy5Ly (0<x<Lx), we have a no-flow
boundary condition,Fy50. One choice that satisfies th
constraint@see Eq.~3!# is

]h

]y
5

]3h

]y3 50, at y50,Ly , 0<x<Lx . ~10!

Other boundary conditions can be chosen; we use th
specified by Eq.~10! due to their simplicity, and due to th
fact that they are applicable to a wide variety of problem
We note that only the normal component of the flux,Fy , is
set to zero aty50,Ly , while the tangential component,Fx ,
is let free, so that these boundaries can be thought o
‘‘slipping walls.’’ Since odd derivatives are set to zero the
they can be also considered as symmetry planes.

Time discretization is performed using implicit Crank
Nicolson scheme. The advantages of the implicit scheme
this problem are obvious: The stability requirement for
explicit scheme is thatDt,C min@Dx,Dy#4, whereDt is a
time step, andC is a positive constant. Thus, an explic
scheme requires very short time steps for a reasonable sp
accuracy.

To explain time discretization, it is convenient to subs
tute k5 i 1( j 21)Nx , where i 51, . . . ,Nx , j 51, . . . ,Ny in
the system of ordinary differental equations, Eq.~6!. Apply-
ing Crank–Nicolson scheme to this system, and using
notationhk

n to denote the solution at the pointk at the time
tn, leads to the system ofNxy5Nx3Ny nonlinear algebraic
equations

hk
n112hk

n

Dtn 1
1

2
~ f k

n111 f k
n!50 ~1<k<Nxy!, ~11!

whereDtn is a nth variable time step, andtn5nDtn. This
system is linearized using the Newton–Kantorovich meth
the linearized problems are then solved using iterative bic
jugate gradient method.

Time evolution from a given initial condition~discussed
in the next section! is performed by variable time steps, th
size of which is limited by two requirements:~a! That the
solution is strictly positive everywhere in the domain, a
~b! that an accuracy condition is satisfied. The condition~b!
is enforced by estimating the local relative errorek of the
solutionhk

n11. A Taylor expansion aroundhk
n leads to

ek5
~Dtn!2

hk
n

d2hk
n

dt2
, ~12!

so that

ek'
2Dtn

Dtn21

Dtn21hk
n111Dtnhk

n212~Dtn211Dtn!hk
n

~Dtn211Dtn!hk
n . ~13!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



d

n-
a
e
us
to

to
an
r

es

IV
e

nd
b-
id

e
he

f
the
the
line

s is
the

r the
se
gs.

the

e
so
on

l in

e

u-
t

ary
ain.
ass

by

ent

3172 Phys. Fluids, Vol. 13, No. 11, November 2001 L. Kondic and J. Diez
If E5max(ek) (1<k<Nxy) is less than a given upper boun
Em ~typically, Em51022– 1023), the solutionhk

n11 obtained
with the time stepDtn is accepted; otherwise,Dtn is reduced
and a new calculation ofhk

n11 is performed.
The simulations that follow are computationally inte

sive, so that significant effort has been put in producing
efficient method. To illustrate this point, we note that larg
simulations presented in Sec. V, are typically performed
ing about 105 grid points. Spatial discretization then leads
a system of 105 nonlinear algebraic equations@Eq. ~6!#. After
linearization, one needs to invert a sparse 1053105 matrix
with about 106 nonzero elements. Any direct approach
solving this problem would be too slow; for that reason
iterative method is chosen. Furthermore, time accuracy
quirement limits the time step to about 1022, requiring about
104 time steps for a typical simulation. The computing tim
on the fastest available workstations~R12000 CPU! vary be-
tween 15 and 20 hours for the smaller simulations in Sec.
to a couple of weeks for larger simulations presented in S
V.

III. ONE-DIMENSIONAL SOLUTION AND LINEAR
STABILITY ANALYSIS

Let us for a moment ignore contact line instability, a
remove they-dependence of the fluid profile from the pro
lem. Figures 2~a! and 2~b! then show snapshots of the flu
profiles at equal time intervals forD50 andD51, resulting
from these 1D simulations~recall that1x direction points

FIG. 2. Profiles of a film flowing down a vertical plane~a!, and down an
inclined plane~b!. The time interval between profiles isdt52, the grid size
is Dx50.05, andb50.1. ~c! Growth rates following from LSA vs wave
numberq52p/l for D50 andD51. The wavelength of maximum growth
is lm52p/qm , and the critical wavelength islc52p/qc .
Downloaded 16 Oct 2001 to 128.235.249.42. Redistribution subject to A
n
r
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down the incline!. We see that, after initial transients, th
flow develops a traveling wave profile, that moves with t
constant velocityv f511b1b2 ~see, e.g., Bertozzi and
Brenner15!.

The main feature of the profileh(x,t) is the presence o
a bump near the contact line. This bump, resulting from
fluid accumulation behind the front, is due to the fact that
viscous stress on the plane is much greater in the contact
region than in the fluid bulk. The increased viscous stres
balanced by the component of the bump weight in
downslope direction. Linear stability analysis14,15,24 obtains
that the presence of the bump is a necessary condition fo
instability of the fluid to small perturbations in the transver
direction. Our LSA result for the parameters used in Fi
2~a! and 2~b!, are shown in Fig. 2~c!. The growth rates,
calculated as the eigenvalue of the linearized problem,14,15,24

is consistent with the previous results. An increase ofD leads
to a decrease in the growth rates, and also to a shift of
mode of maximum growth~characterized bylm52p/qm ,
wheres(qm)5maxus(q)u!, to longer wavelengths; we relat
this prediction to our 2D simulations later in Sec. V. We al
note that the height of the bump and LSA results depend
the precursor thickness: smallerb leads to larger bump, and
stronger instability. This effect is discussed in more detai
Sec. IV.

Remark:
There is an interesting feature of the fluid flow in th

contact line region, shown~magnified! in Fig. 3~a!. We see
the formation of a fluid depression~dip! ahead of the front
region, which leads to a local negative velocity field@Fig.
3~b!#. ~Dip formation can be also seen in the previous sim
lations of this problem,20,24 but, to our knowledge, it has no
been analyzed in any detail.! The fluid within the precursor
film ~which is flowing down with the velocity equal tob2! is
sucked into the bulk region due to a decrease in capill
pressure, and later pushed in the positive direction ag
This negative velocity field can be understood based on m
conservation. In the moving reference frame~moving with
v f!, the flux in thex direction is given byFx5h(v2v f)
52b(b11), where the last equality can be obtained
calculating the flux far in front of the contact line.14,15,24,32

Since in the dip regionh,b, we write h5ub, u,1, and
obtain

FIG. 3. Fluid thickness and velocity profile of the film near the appar
contact line forD51 andb50.1.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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v5b22~b11!
~12u!

u
. ~14!

Thus, v,0, providedu,(b11)/(11b1b2). Our simula-
tions show that, for any typicalb, h in the dip region is small
enough (u'0.85) to produce negative velocities there.

We note that this depression was first noted in Ref. 33
the context of drop spreading on a horizontal pre-exist
film. It is a purely surface tension effect; we have notic
only very weak influence of the forcing gravity term in1x
direction on its magnitude.

IV. EVOLUTION OF A SINGLE TRANSVERSE MODE

In this section we address the problem of the dynam
of a thin film contained in a domain whose lateral dimens
is comparable to the wavelength of maximum growth fro
LSA, and to the domains used in previous simulations of t
problem.18–20 We compare our results with those simul
tions, as well as with experimental results,7,8 and linear14,15,24

and weakly nonlinear16 stability analyses. As a representati
case, we useLy516.

A. Vertical plane „DÄ0…

The simulations are performed using as initial conditi
the results of 1D simulations, perturbed att50 by a single
transverse mode characterized by the wavelengthl05Ly .
The position of the front att50 is then given by

xf~y!5xf 02A0 cos~2py/l0!, ~15!

where xf 0 is the unperturbed position~see also Diez and
Kondic21!. The perturbation is characterized by a small a
plitude A0 , and a phase such that this initial condition sat
fies ]h/]y50 at y50,Ly . We have verified that withou
imposed perturbation, the flow evolves for very long tim
(t.1000) without deforming the front line, thus indicatin
that numerical noise alone~possibly due to roundoff error!
does not lead to instability at the time scales considere
this work. Most of the computations are performed usin
precursor film of thicknessb50.01, on the gridDx50.2,
Dy50.25. The convergence studies show that this grid sp
ing is sufficient~convergence results follow!. The size of the
computational domain is typically varied betweenLx540
and Lx560, except in the case of simulations extended
very long times, presented in Sec. IV C, whereLx5200.
Since the computations are performed in the laborat
frame, the computational box is shifted when necessar
the direction of the flow. Alternatively, one can perform com
putations in the reference frame moving with the velocity
the unperturbed flow,v f ; this corresponds to shifting the bo
at each time step. We have verified that these two approa
lead to consistent results.

Figure 4 shows the flow at four different times. Since
t50 only a single~linearly unstable! wavelength is present
this one grows and forms a long finger with almost strai
sides, resembling the shape of the patterns observed
Johnsonet al.,8 and reproduced in Fig. 1~note that Fig. 4 is
significantly stretched in they direction!.
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To follow the development of the instability more qua
titatively, we record the position of the tip,xt , and the posi-
tion of the root,xr , as a function of time~recall that the
boundariesy50,Ly can be considered as slipping walls!.
Figure 5~a! shows that there is a rather fast growth of t
pattern for very early times, followed by a slower growth f
later times. For these later times, the velocities of propa
tion of the tip,v t , and the root,v r , are approximately con-
stant: v t'1.55, v r'0.7 ~the velocity of the unperturbed
front is v f'1). From these results, we extract the leng
L(t)5xt2xr of the finger as a function of time. Figure 5~b!
shows this quantity normalized by the initial lengthL0

52A0 on a semilog graph. For early times,L(t) increases
exponentially with the growth rates @defined byL(t)/L0

FIG. 4. Contour plot of the flow down a vertical plane perturbed by a sin
mode characterized byA050.1 andl0516. The precursor film thickness i
b50.01, and the grid spacing isDx50.2, Dy50.25.

FIG. 5. ~a! The positions of the tip and root as function of time.~b! The
length of the finger normalized by the initial lengthL052A050.2 on semi-
log scale; the straight line has a slope of 0.235 as explained in the tex~c!
The result from~b! on linear scale. The parameters are as in Fig. 4.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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5exp(st)# determined to bes'0.235, very close to its value
predicted by LSA~for l'14, Troian et al.14 obtain sm

'0.24). Figure 5~c! shows the same result on a linear grap
which is more convenient for late times. For the time ran
shown in this figure, we see linear increase of the fin
length. The transition between exponential and linear gro
is explained qualitatively by Brenner,25 who estimates tha
this transition happens when the length of the pattern
comes comparable to the width of the capillary ridge.
comparing Fig. 5~b! with Fig. 2~a!, which shows the profile
of the unperturbed front, we see that the computational
sults agree well with this estimate. The question of grow
for very long times is discussed later in Sec. IV C, in t
more general context of the flow down an inclined plane.
the remainder of this section we analyze the influence of
parameters used in our computations.

First, we verify that the discretization parameters—g
size and time step—produce sufficiently accurate results.
main characteristics of the solution we want to check are
widths, lengths, and growth rates of the patterns. These
sults are shown in Table I for relatively early times, so th
we can also compare the results for the growth rates w
LSA. ~Convergence studies are also performed for lo
times, with very similar results.! Table I shows that the re
sults calculated on a gridDx<0.2, Dy<0.5 agree very well
with the LSA results; largerDx leads, however, to a consid
erable error. We note that the time accuracy is kept fixed
the results shown in the first part of Table I, so that t
convergence is not exactly quadratic. In the second par
the table we show the influence of the parameterEm which
determines the size of the time step through Eq.~13!. For
Em<1022, and Dx50.2,Dy50.25, the results are pract
cally independent of this parameter. Again, due to the spa
discretization error, the convergence is not exactly quadra
The results in Table I, as well as similar ones calculated
longer times, suggest our choice of the grid,Dx50.2 and
Dy50.25 (Dy50.5 for the results in Sec. V B!, and of the
imposed time accuracy.

TABLE I. The table gives the results for the~nondimensional! width,
length, and growth rates of the patterns for differentDx, Dy, and the pa-
rameterEm , that determines accuracy of the time evolution; all other
rameters are as in Fig. 4. The widths are defined as full widths of
patterns at half length; the results are given at timet517.

Dx Dy Em width length s

0.1 0.125 1022 9.0 10.6 0.234
0.1 0.25 1022 9.2 10.8 0.235
0.1 0.5 1022 10.0 11.4 0.238
0.2 0.125 1022 9.0 10.8 0.235
0.2 0.25 1022 9.2 11.0 0.235
0.2 0.5 1022 9.8 11.5 0.238
0.4 0.125 1022 9.6 6.4 0.204
0.4 0.25 1022 10.2 6.5 0.205
0.4 0.5 1022 10.4 6.8 0.207
0.2 0.25 1024 9.2 11.0 0.235
0.2 0.25 1023 9.2 11.0 0.235
0.2 0.25 1022 9.2 11.0 0.235
0.2 0.25 1021 9.6 11.2 0.237
0.2 0.25 1.0 9.6 11.4 0.238
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Next, we analyze the influence of the precursor fi
thickness on instability. Experimentally, it is possible to co
trol the value of this parameter in flows on a prewetted s
strate, as done systematically by Ye and Chang.17 However,
in most of the experiments,b is a rather small quantity,b
'102421025. Such small values ofb lead to computationa
difficulties, since the convergence issues require very
grids and bring computational cost to an unacceptable le
Fortunately, from LSA14,15,24we know that the growth rate
depend onb rather weakly. This is also confirmed by th
weakly nonlinear analysis.16 These results encouraged us
try to find the ‘‘optimal’’ value ofb, so that the results tha
are of interest to us~such as growth rates! are computation-
ally accurate, but also almostb-independent. In order to
compare our results with LSA and experiments, we also
plore the influence of relatively largeb’s on the instability.

Figure 6~a! shows the influence ofb on the length of the
pattern. We see that the growth rate of the patterns is sig
cantly reduced for largerb’s, in agreement with LSA
results.14,15,24 Figures 6~b! and 6~c! show the effect that
larger b’s have on the speed of tips and roots. Asb’s are
increased, the tips move slower, while the roots move fas
The increase of the root velocities is as expected, since la
b’s permit easier flow~less viscous stresses! in the root re-
gions. Mass conservation then leads to slowing down of
tips. Thus, increase ofb makes the velocities of tips an
roots approach the velocity of the unperturbed planar fro
from above and below, respectively. However, a decreas
b below 0.01 has much weaker influence: The speeds of b
tips and roots~and the growth rates! become practically
b-independent~see Fig. 6!. This weak influence ofb on the
flow for b&0.01 governed our choice ofb50.01 in the
simulations that we compare to experiments, character
presumably by rather thin precursor films~or any other short
lengthscale relevant in the vicinity of a contact line!.

We note that for all exploredb’s, the speed of the roots
is strictly positive. Since this speed is almostb-independent
for small b’s, we conjecture that this speed will be positiv
even for theb’s relevant in the experiments. Correspon

FIG. 6. Influence of the precursor thicknessb on ~a! length of the finger,~b!
position of the tip, and~c! position of the root. Other parameters are as
Fig. 4. The arrows show the direction in whichb is increased.
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ingly, our results suggest that complete coverage of the s
strate eventually results.

The precursor thickness also influences the shape o
emerging pattern. Figure 7 show the snapshots of the patt
for two representative cases,b50.01 andb50.1. The profile
obtained usingb50.01 is characterized by almost straig
sides, as observed in the experiments.7,8 Largerb leads, how-
ever, to a pattern with more oblique sides. Additional sim
lations show that there is a continuous transition from alm
straight to more oblique patterns asb is increased. Forb
&0.01, the shape is almost insensitive to the value ofb,
similarly to the growth rates and to the speeds of tips a
roots. Larger values ofb in Eres et al.,20 or, equivalently,
larger slipping lengths in Moyleet al.,19 might be the reason
for obtaining more triangular-like pattern shapes in tho
simulations.

B. Inclined plane „DÌ0…

We now proceed to the more general case of the fl
down an inclined plane (D.0). As a representative case, w
chooseLy5l0516, andD51.

Figure 8 shows the contours of the fluid height at fo
times. By comparing with Fig. 4, we see that the shape of
emerging pattern is very different. ForD50, a finger with
almost straight sides results; forD51, we obtain a pattern
which much more closely resembles the triangular sha
seen in the experiments for the flow down an inclin
plane7,8 ~see also Fig. 1!. Another difference is that the de
velopment of the instability is much slower forD51 com-
pared toD50, even in our nondimensional units@recall that
the time scaletc}(sina)24/3, Eq. ~4!#.

Figure 9 shows the positions of the tips and roots
D51; for comparison, we also show the results forD50. In
Fig. 9~a! we see that forD51, the tips move slower, and th
roots faster, compared toD50, as observed experimental
by Johnsonet al.8 For D51, we still obtain exponentia
growth for early times, now characterized by a smal
growth rates'0.11; a decrease ofs for largerD ’s is also
predicted by LSA@viz. Fig. 2~c!#. For later times the growth
slows down and becomes even slower than linear@Fig. 9~c!#.

FIG. 7. Snapshots of the patterns indt55 intervals for two representative
b’s: ~a! b50.01, ~b! b50.1. Other parameters are as in Fig. 4.
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The possibility of growth saturation and steady solution
very long times is discussed below in Sec. IV C.

C. Long time dynamics

After the overview of the development of the instabilit
we now concentrate on the dynamics for very long tim
aiming to understand the general features of the flow. T
shapes of the emerging patterns do not change for lon
times in any significant manner compared to the res
shown in Figs. 4, 7, and 8. However, long time results g
additional insight concerning increase of the pattern leng

Figure 10 shows that, for sufficiently largeD ’s, growth
saturation occurs. The growth saturates at smaller pat
lengths for largerD ’s, as one would expect, since an increa
of D reduces the instability. We have verified that the sa

FIG. 8. Contour plot of the flow down an inclined plane (D51). All other
parameters are as in Fig. 4.

FIG. 9. ~a! The positions of the fronts and roots as functions of time
D50,1. ~b! The length of the patterns forD50,1. exponential fits for early
times are also shown.~c! Results from~b! on linear scale. The parameter
are as in Fig. 4 (D50) and Fig. 8 (D51).
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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ration effect forD.0 is rather weakly influenced by th
precursor thickness, the main effect being that, for a gi
D, larger b’s lead to saturation at earlier times@see also
Remark ~4! below#. Additional convergence studies sho
that the saturation effect is not modified by grid refinem
or by modifying the imposed time accuracy~effectively,
changing the time step!.

The growth saturation, that we obtain for largerD ’s,
implies the existence of a stable nontrivial traveling wa
solution, that results when the growth stops, and the fl
simply translates down the incline, without changing
shape. To our knowledge, this result has not been reporte
the experimental literature. There are few possible expla
tions for this. First, most of the experiments are perform
using constant volume configuration; possibly in that se
saturation does not occur. In the experiments where the
stant flux configuration is used,7,8 results for the time depen
dence of the patterns lengths are not reported; howeve
appears that steady state profiles have not been observ34

Next, our simulations assume completely wetting fluid; t
fluids used in the experiments are always partially wetti
even though the contact angle could be quite small. Fina
there is a possibility that saturation happens on a longer t
scale than the one examined in the experiments. We pres
detailed study of the experimental parameters and com
our nondimensional quantities with the experimental one
Sec. IV B; here we just note that for the fluid properties
Fluid B,8 and for the inclination angle corresponding a
proximately to D50.5, our simulations predict saturate
length of about 16 cm. This length compares rather well w
the one shown in Johnsonet al.8 ~see also Fig. 1!. We con-
sider that it would be of interest to perform experiments
even longer times in order to settle the question of existe
of steady-state patterns. If saturation is not observed in
periments, then apparently this effect can be obtained on
the ~ideal! case of a completely wetting fluid.

The question of growth saturation is also addressed c
putationally in the recent work by Ereset al.20 They report
saturation of growth in their simulations of a flow down
vertical plane, occurring att'150 ~Fig. 14 in Ref. 20!. This

FIG. 10. Length of the emerging patterns for differentD ’s. All other param-
eters are as in Fig. 4, except the box sizes in thex direction, which areLx

5200.
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appears to be contradictory to our results forD50 shown in
Fig. 10. In order to understand this difference, we perform
additional simulations of theD50 case. In particular, we
analyzed the effects of increasing–reducing time and sp
accuracy of our scheme, and the influence of varying
initial condition, without ever obtaining saturated solutio
for D50. However, there are additional factors that can le
to modified results. One is the precursor film thickne
which is larger in Ref. 20, compared to the one used he
Figure 11~a! shows the difference in the results for the flo
down a vertical plane and for very long times asb is in-
creased: Growth becomes slower than linear fort.100.
Still, at least for the times we explore, there is no saturati

Another explanation of the different results is that t
growth saturation~and the existence of a nontrivial travelin
wave solution! may depend on the size of the computation
domain in the transverse,y, direction. Indeed, Fig. 11~b!
shows that this is really the case. In this figure we follow t
pattern length for a few values ofLy and D50 ~recall that
l05Ly). For Ly comparable or slightly larger thanlm , the
pattern length increases linearly for very long times. Ho
ever, forLy smaller thanlm , the dynamics is significantly
modified: The growth is suppressed, and it even saturates
small Ly'lc @see Fig. 2~c!#. This slowing down of the
growth for Ly,lm points to a nontrivial behavior of the
system close to the bifurcation pointLy5lc . For D50, Ly

'lc appears to be a requirement for the growth satura
and for the existence of a nontrivial traveling wave. ForD
.0, however, our numerical results imply that this traveli
wave solution is always admissible. A natural question to
is whether there is something special about theD50 case,
and whether arbitrary smallD is sufficient to modify the
long time dynamics. The answer to this question cannot

FIG. 11. ~a! Long time evolution of the length of the emerging patterns f
D50 and differentb’s. The solid lines emphasize the linear growth forb
50.01, and the deviation from linear growth forb50.1. ~b! Length of the
emerging patterns forD50 and differentLy’s. All other parameters are a
in Fig. 4, except the box sizes in thex direction, which areLx5200.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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accurately reached based on numerical results alone, and
be subject of our future work@see also Remark~1! below#.

To return now to comparison with the results reported
Ref. 20, we note that the related simulations reported th
are performed usingLy'12 andb50.05. From Fig. 11~a!,
one can already anticipate that the range ofLy’s, for which
growth stops, broadens asb is increased. This has been co
firmed by additional simulations. In particular, these simu
tions show that, for the parameters as in Ref. 20, gro
saturation occurs. Correspondingly, the results presented
and in that work are consistent. However, the fact that
results are qualitatively modified as the parameters~Ly and
b! are changed, shows that one has to be very careful
reaching any general conclusions concerning long time
havior of the flow. We note that in most of the laborato
experiments, the domains are large, andb’s are small. From
our results, it follows that one should not expect growth sa
ration in the laboratory experiments of the flow down a v
tical plane. Still, further research of this problem, both the
retical and experimental, is definitely required.

Remarks:
~1! From the discussion in this section, it is obvious th

the saturation effect, and, in particular, the saturated lengt
the patterns, depends on a number of factors, most impo
beingD, b, andLy . Our results for differentD ’s shown in
Fig. 10 are obtained using a particular combination
@Ly ,b#, and depend on these two parameters. Despite
limitation, we consider that it is of interest to find the fun
tional dependence of the pattern length on the value oD
~i.e., the inclination angle, assuming all other parameters
fixed!. For this reason, we have performed additional sim
lations, forD ’s in the range@0,1#, with the idea of estimating
the pattern length forD→0 by extrapolation. We find tha
best agreement is provided by the power law:L(t→`)
5CD2b, with C'25.74 andb'1.46. We note that this
fitting function slightly overestimates the pattern lengths
larger D ’s (D.1), while it approximates very well the re
sults for smallerD ’s. This fit predicts an infinite length fo
D50, i.e., flow down a vertical plane. Future experimen
shall verify this prediction.

~2! An increase ofLy abovelm ~but still requiringl0

5Ly), leads to a completely different effect. From LSA, w
know that the growth rates of longer wavelengths are be
significantly reduced@see Fig. 2~c! for l.lm#. Correspond-
ingly, one expects that for a sufficiently largeLy , nonlinear
mode~self! interaction can lead to emergence of new mod
that are not imposed initially. Figure 12 shows precisely t
effect. AsLy is increased, new modes develop. These mo
are characterized by shorter~and more unstable! wave-
lengths, i.e., separations between fingers. The partic
mode that emerges is determined by the domain size. In
12 we show three examples where the resulting modes
given by l5Ly/2 for Ly524 in Fig. 12~a! and Ly532 in
Fig. 12~b!, and byl5Ly/4 for Ly548 in Fig. 12~c!. @Note
that they scales in the parts~a!–~c! of this figure are differ-
ent. In particular, the widths of the emerging fingers are
same in all cases shown.# Since our computations requir
]h/]y50 at the domain boundaries (y50,Ly), and the ini-
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tial condition is symmetric with respect to the domain cen
(y5Ly/2), these newly produced wavelengths are co
strained by the approximate requirementl'Ly / i , i
52,3, . . .. ~This requirement is approximative because n
all emergingl’s in any given simulation have to be the sam
However, they are typically close tolm .! We note that Fig.
12 shows a slightly faster growth of the finger in the midd
of the domain forLy532 @Fig. 12~b!#, compared to the one
for Ly524 @Fig. 12~a!#. This can explained based on th
larger growth rate forl516, compared tol512. The fingers
centered aroundy5Ly/2 grow faster in both cases than tho
at y50,Ly , since they develop directly through the line
growth mechanism from the initially imposed perturbation
Figure 12~c! differs because the initially imposed perturb
tion is completely removed; consequently, the growth of
resulting patterns is slower. More discussion concerning n
linear mode interaction follows in Sec. IV.

~3! The long time dynamics can be also influenced
the size of the computational domain in thex direction. We
observe in the simulations that if the length of the patte
L(t), becomes comparable toLx , the saturation can occu
One possible interpretation is that ifL(t)'Lx , only a small
part of the main body of the fluid is kept inside the doma
leading to a modified dynamics. The results we present h
for D50 case are calculated usingLx5200; the ~linear!
growth of the pattern is followed untilt5240. If smaller box
size, i.e.,Lx5100 is used, we observe the deviation fro
linear growth att'130, whenL(t)'90.

~4! The influence of the size ofb on instability for the
flow down an inclined plane is similar to that of the flo
down a vertical plane, with possibly less dramatic con
quences since the shape of the patterns is already triang

FIG. 12. Snapshots of the contact line atdt52 intervals forLy5l0524 ~a!,
Ly5l0532 ~b!, andLy5l0548 ~c!. All other parameters are as in Fig. 4
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~viz. Fig. 7 for D50 case!. Larger b’s lead to decreased
instability, as expected. We note that for larger values ofD,
the instability can be completely suppressed by using a th
precursor film, in agreement with the weakly nonlinear res
by Kalliadasis,16 and with experimental results by Veretenn
kov et al.5 and Ye and Chang17 for the flow down a~prewet-
ted! inclined plane. In particular, based on LSA in the lim
of small wave numbers, it is shown that one can defin
stability boundary in@D,b# space, that separates stable fro
unstable situations.17 They obtainDcrit52C logb, whereC
50.88. This logarithmic dependence is consistent with
general statement that the macroscopic fluid behavior
pends in a logarithmic way on any small length scale int
duced at the contact line.10,26,35Interestingly enough, despit
the fact that our simulations solve the fully nonlinear pro
lem for larger wave numbers, we recover approximat
logarithmic behavior as in Ref. 17, with a similar value ofC.

~5! In this work, we do not discuss the development
instability for very small inclination angles, such asa51.8°
in Johnsonet al.,8 4° in de Bruyn,4 or 8° in Ye and Chang.17

Experimentally, instability is observed for these inclinati
angles; on the other hand, LSA predicts stability.15 Ye and
Chang17 suggest that the continuous spectrum of the lin
operator governing the dynamics in the linearized version
Eq. ~5! has to be included to properly account for the infl
ence of the surface inhomogeneities. Our work on addres
this problem is in progress.

FIG. 13. Snapshots of the contact lines atdt52 intervals for four different
perturbations:l0,i52Ly / i , i 54,3,2,1 for ~a!–~d!, respectively. All other
parameters are as in Fig. 4.
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V. NONLINEAR MODE INTERACTION

In the first part of this section, we still analyze a narro
system, characterized byLy'lm , but with a few modes ini-
tially present. This configuration allows to gain better insig
into the nonlinear mode interaction. In the second part of t
section, Sec. IV B, we extend the discussion to large syste
whereLy@lm , so that the results can be directly compar
to experiments.

A. Narrow domain: L yÉlm

To simplify the discussion, here we consider only t
flow down a vertical plane (D50). Figures 13 and 14 show
an example of how the initial perturbation influences t
development of instability. We still useLy516, but im-
pose perturbations characterized by differentl0,i52Ly / i ,
i 51,2,3,4~these wavelengths are permitted by the bound
conditions aty50,Ly!. For i .4, the resulting perturbation
are characterized byl0,i,lc from LSA @see Fig. 2~c!#, and
they die away for very short times, resulting in a straig
contact line.

Figure 13 shows the evolution when only one mode
initially present. Figure 13~a! shows the slow growth of a
weakly unstable model058; Figs. 13~b! and 13~c! follow
the growth of more unstable modesl0532/3,16. All these
results are as expected from LSA; the only difference
tween them is in their growth rates. Figure 13~d!, on the
other hand, shows the effect of the nonlinearity on the dev
opment of the instability. Initially, only the model0532 is
present, with peak aty516. This mode is, however, ver
weakly unstable, and leaves enough space in the domain
other unstable modes to develop, similarly to the resu

FIG. 14. ~a! Snapshots of the contact line atdt52 intervals where initially
more than one mode is present (l0,i52Ly / i ). ~a! i 51,2, ~b! i 51,4, ~c! i
51,2,3,4. All other parameters are as in Fig. 4.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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shown in Fig. 12. In this particular case, the boundary c
ditions dictate development of the model516. The initially
imposed asymmetry of the problem~with respect to they
58 line! results in an asymmetric situation for longer time
with the pattern aty516 ahead of the one aty50.

Figure 14 shows snapshots of the contact line wh
more than one mode is superimposed att50 in the domain
of width Ly516. In Fig. 14~a!, modesl0516,32 are initially
present; we see that the mode with larger growth rate~l516
in this case! wins, while the weakly unstable model532
completely disappears. The initial asymmetry reflects its
only in a small shift of the pattern to largery’s @compare
with Fig. 13~c!#. Figure 14~b! shows an example of a situa
tion where two initially present, weakly unstable modesl0

58,32, completely disappear, while the asymmetric mo
l516 appears. In Fig. 14~c! we follow the competition of all
four modes. The outcome is similar to Fig. 13~b! where only
the model0532/3 is initially present; however, the presen
of other modes~in particular,l0516! leads to a modified
growth of the pattern centered aroundy'7.

Obviously, more work is needed to understand the m
interaction on a more fundamental level. Weakly nonline
analysis, presented recently by Kalliadasis16 is a promising
starting point in this direction. The main purpose of the d
cussion presented here is to illustrate the nonlinear m
interaction, and to provide some insight into experimenta
observed patterns. For example, one question raised by
periments is the source of nonuniform distribution of p
terns, and their unequal length.1,4,8,36Here, we see that thes
effects can be a consequence of the nonlinear interactio
just a few modes, limited to a narrow computational doma

B. Wide domain: L yšlm

In this section we present results for the instability
wide domains, whose size compares well with the exp
mental ones. We model experimental noise by modifying
position of the fluid front through a perturbation of the for

xf~y!5xf 02(
i 51

N

Ai cos~2py/l0,i !, ~16!

wherel0,i52Ly / i as explained above, andAi is the ampli-
tude of the i th mode, chosen randomly in the rang
@20.1,0.1#. In the limit N→`, this initial condition is the
Fourier expansion of a smoothly corrugated contact line. T
simulations are typically performed usingLy596, N550,
and Dy50.5. Additional simulations confirm that the ma
features of the results are independent of the domain size
grid resolution, and the number of modes imposed att50.

Figure 15 shows the snapshot of the contact line
the fluid film flows down a vertical plane~see Ref. 21 for
the contour plots!. In agreement with LSA14,15 and experi-
ments,4,8 the shortl’s disappear quickly, since these are li
early stable. For later times, long finger-like rivulets form,
reported by Johnson7 and Johnsonet al.8 ~see also Fig. 1!.
The emergingl’s ~separation between the fingers! are close
to lm . However, LSA applies only to short times and cann
predict the behavior of the system when the perturbati
become large. At this point, nonlinear simulations are
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only means of linking experiments with theory. Indeed,
spection of Fig. 15 recovers results which compare favora
with experimental ones. One of these results is a nat
nonuniformity of the emergingl’s—the system chooses th
most favorable configuration, that results from the nonlin
coupling between the initially present modes, modified
the limitations imposed by a finite system size. Simi
spread of emergingl’s is also observed experimentally, i
both constant volume and constant flux configurations.4,6,8

Furthermore, coarsening effects can be seen in Fig. 15~e.g.,
compare the profiles att510 andt530 for y'70!. If two
fingers initially start developing too close to each other,
large curvature in they direction apparently forces them t
merge. We note that the tips of the fingers for late tim
move with constant velocity that is larger than the~constant!
velocity of the roots~compare the distance between two co
secutive snapshots in Fig. 15!. Correspondingly, there is no
growth saturation, similarly to the narrow domain and lar
l0 results from Sec. III A.

Figure 16, whereLy5192, shows that an increase
domain size does not significantly influence the developm

FIG. 15. Snapshots of the contact line indt52 intervals for the flow down
a vertical plane~Ly596, N550, b50.01, Dx50.2, Dy50.5!.

FIG. 16. Snapshots of the contact line indt52 intervals for the flow down
a vertical plane~Ly5192, N5100!. All other parameters are as in Fig. 15
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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of instability. There is still a relatively large spread of eme
ing wavelengths, as in Fig. 15. Careful inspection of Fig.
shows, however, an additional effect. The patterns that
velop closely spaced are characterized by a slower gro
~e.g., the patterns abouty'32,128,160, in Fig. 16!. Similar
effect can be also seen in the experimental results show
Fig. 1. An explanation of this effect follows by extension
the narrow domain results from Sec. IV to this setting. Fig
11~b! shows that for smallLy , growth rates decrease. Wh
governs the growth rate of individual fingers in Fig. 16 a
pears to be the distance to the neighbors; this distance p
the same role as the domain size in Fig. 11~b!. Alternatively,
this effect can be explained by a conservation of mass a
ment. The length of a pattern depends on the width of
region that supplies the fluid: Thus if patterns are close, e
of them has less fluid available for its growth.

Figure 17 shows a 3D contour plot of the fluid at the la
time shown in Fig. 15. The thickness of the fluid is mu
larger at the tips, while the capillary ridges are much sma
at the roots. Cross sectional profile of the fingers can
closely approximated by a cylindrical cap, similarly to th
profiles obtained in narrow domains, see Diez and Kondi21

Since some experiments are performed on a prewe
plane with different values of the precursor thickness~e.g.,
Veretennikovet al.5!, it is of interest to see how differentb’s
influence our results in the case of largeLy . This result is
shown in Fig. 18. A large precursor leads to emerging p
terns that are more rounded compared to theb50.01 case
~see Fig. 15!, and their growth is much slower, as expect
based on the simulations in narrow computational doma
Further, the average distance between the patterns is
creased, as anticipated from LSA results, which show a s
of the mode of maximum growth towards longer wav
lengths asb is increased.14,15,24The shapes of the patterns
this figure are similar to the ones obtained by Kalliadas16

using weakly nonlinear analysis for a similar value ofb. As
pointed out by the author, his approach is not valid for sm
b’s, so the computational results obtained usingb50.01
~e.g., Fig. 15! cannot be directly compared to his results.

FIG. 17. 3D contour plot of the fluid at the last time shown in Fig. 15
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Next, we proceed to model the flow down an incline
plane. Figure 19 shows the representative caseD51 ~see
also Ref. 21!. The emerging patterns strongly resemble t
experimental results shown in Fig. 1 fora,90°. Their shape
is now triangular, and the roots are almost shrunk to a po
The growth of the patterns is slower compared toD50, and
their separations and widths are increased, even in term
the length scalexc(a) ~note that Fig. 19 shown the snapsho
in dt55 intervals, compared to Fig. 15 wheredt52!.

Examination of Fig. 19 for late times shows that
steady-state configuration has been reached. This result
that the growth saturation is not an effect related to art
cially narrow computational domains~Sec. IV!, but it also
appears in domains that compare well with the experime
ones~such as the one shown in Fig. 1!. Future careful ex-
periments should give a definite answer to the questions
lated to the existence of nontrivial traveling waves.

Figure 20 shows the 3D fluid profile for this case. T
capillary ridges are much less pronounced compared to
flow down a vertical plane~viz. Fig. 17!. We also note the
formation of valleys across the emerging patterns, as
served by Johnsonet al.8

It is interesting to observe that both an increase ofD and
an increase ofb influence the emerging wavelengths in

FIG. 18. Snapshots of the contact line indt52 intervals for the flow down
a vertical plane. Hereb50.1; all other parameters are as in Fig. 15.

FIG. 19. Snapshots of the contact line for the flow down an inclined pl
D51 in dt55 intervals. All other parameters are as in Fig. 15.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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similar fashion: In both cases, the typical emergingl in-
creases. Other characteristics of the emerging patterns
however, very different, in particular the shape, and
widths of the roots.

From additional simulations similar to the ones shown
Figs. 15 and 19~but characterized by different domain siz
and different seeds for the random number generator!, we
extract results for the averagel’s, and for the widths,W’s, of
the patterns~full width at half length!. These are computed a
late times, when they are almost time independent. We ob

lD50511.862.6, lD51516.062.7, ~17!

where the average and one standard deviation are repo
The trend of increase of the emerging wavelengths asD is
increased is consistent with LSA. The average values
smaller than predicted by LSA~lm'14 for D5014!; how-
ever, the difference is less than one standard deviation.
suming that this difference is real, the results of Sec. IV
suggest that the nonlinear interaction among the compe
normal modes is responsible; nevertheless, we believe
further research is needed to completely clarify this iss
We note that recently, Ye and Chang17 analyzed the effect o
noise generated in the prewetted surface on the emer
wavelengths, and also observed the emergence of w
lengths shorter than predicted by LSA. That work, howev
is concerned with the constant volume flow, where thinn
of the fluid may have important consequences@see also Re-
mark ~5! below#.

The widths of the patterns are given by

WD5055.560.4, WD51511.261.0. ~18!

We note a significant increase ofW’s asD is increased. Also,
W’s are much more uniform thanl’s, as observed in the
experiments.4,8

In order to directly compare computational results w
experimental ones, we now proceed to model a partic
experimental situation. We concentrate on the works
Johnson7 and Johnsonet al.8 that report experimental result
concerning the influence of the inclination anglea on the
shape of the patterns in a constant flux flow. Their res

FIG. 20. 3D contour plot of the fluid at the last time shown in Fig. 19
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~one example is reproduced in Fig. 1! show a well defined
transition from rounded triangular patterns for smalla to
finger-like rivulets for the vertical plane, in complete agre
ment with the computational results presented here. To fa
tate a quantitative comparison with these experiments,
have performed additional simulations with the particular
of parameters used in Refs. 7 and 8. We choose to m
‘‘Fluid B’’ as reported in Ref. 8, since it is characterized by
small contact angle. This fluid~80% glycerin in water! has
density r51.21 g/cm3, kinematic viscosityn50.69 cm2/s,
and surface tensiong566 dyn/cm. The inclination angle
that we reproduce here area590°, 27.9°, and 13.9°. The
thickness of the fluid far behind contact line is not direc
reported for all inclination angles; however, we can o
tain this quantity from the reported value of Reynol
number, Re, which is defined asRe5Q/n, where Q is
the volumetric flow rate per unit width. This giveshc

5@3Ren2/(g sina)#1/3, so we obtain hc50.057, 0.074,
0.092~cm! for a590°, 27.9°, 13.9°, respectively. Using Eq
~4! we calculate the corresponding length scales andD ’s for
these three angles; see third column of Table II. We note
the results presented Refs. 7 and 8 show very little dep
dence on Reynolds number, implying that the inertial effe
play only minor role in that experimental setup.

Figure 21 shows contour plots of the finger profiles f
these three angles when the fronts have traveled the s
distance down the incline. The results in this figure are giv
in dimensional units, using the scales obtained above, so
they can be compared to the experiment shown in Fig. 1.
note that the direct comparison is limited by a few facto
~1! The width of our computational domain is about a half
the experimental one;~2! the initial conditions are different
since the size of the initially imposed perturbations in t
simulations is much larger than any microscopic no
present in the experiment, and~3! the experimental results
are shown at much later times, leading to longer patte
than those shown in Fig. 21.~Note the patterns shown in Fig
21 have not yet reached their saturation lengths.! Still, the
main features of the results agree very well. In both exp
ment and simulations there is a clearly defined transit
from rounded triangular patterns for smaller inclinatio
angles to finger-like rivulets for the vertical plane. AsD is
increased, the instability is weaker, both in experiments
computations. Also, the emerging wavelengths increase.

The length scalexc ~third column in Table II! allows for

TABLE II. The table gives inclination anglea, nondimensional paramete
D, calculated in-plane length,xc , computed wavelengths of the pattern
lcomp, experimentally measured wavelengths,lexp @from Johnsonet al.
~Ref. 8!# computed widths of the patterns,Wcomp, and experimentally mea-
sured widths,Wexp, from Johnson~Ref. 7! @the widths fora527.9° and
13.9° are also given in Johnsonet al. ~Ref. 8!#. Computed results report the
average and one standard deviation; experimental results give averag
reported/estimated uncertainty. All lengths are given in centimeters.

a D xc lcomp lexp Wcomp Wexp

90° 0 0.15 1.860.4 2.060.3 0.860.1 0.760.1
27.9° 0.67 0.21 3.260.4 3.060.4 2.160.2 2.060.2
13.9° 1.34 0.28 4.560.5 4.060.5 3.260.2 3.060.3
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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a more quantitative comparison between the computed
experimental results. We calculate the average dimensi
wavelengths and widths of the patterns, and compare t
directly with the experimental results shown in Fig. 1. Tab
II shows that the agreement of the calculated and experim
tal values is remarkably good.

Remarks:
~1! In this section, we do not discuss in detail the issu

related to length saturation, since the main features of
results are similar to the ones discussed in Sec. IV.

~2! As noted above, the dimensional wavelengths
also increasing asa is decreased. From Table II, the avera
values for these wavelengths are given approximately
l512,15,16 fora590°, 27.9°, 13.9°, respectively. So,a
significantly influences the emerging wavelengths, at leas
the constant flux case. This is in contrast to the experime
by Huppert,2 performed with a constant fluid volume, whic
suggest that~dimensionless! l’s should not depend on incli
nation angles.

~3! The results for averagel’s reported in Table II do not

FIG. 21. Contour plots of fluid profiles for~a! D50; ~b! D50.67, and~c!
D51.34, plotted when the fluid traveled the same distance downslope
other parameters are as in Fig. 15. Note that thex andy scales are in cm,
and fluid thickness,h, is in mm.
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depend on the domain size, and the relatively large sprea
l’s is not being reduced as the domain size is increased.
shows that the experimentally observed spread ofl’s is not
due to, e.g., boundary effects, but it is an intrinsic property
the system.

~4! Based on the constant volume experimental resu
Jerret and de Bruyn3 predict that the pattern width scales
W;(sina)20.66. This fit, however, does not appear to b
consistent with neither experimental results by John
et al.,8 nor the computational results presented here, show
another significant difference between constant volume
constant flux configurations.

~5! In this work, we analyze the instabilities that develo
after the contact line–fluid front is perturbed. In physic
experiments, triggering perturbations could be also propa
ing from the precursor film in front of the main body of th
fluid. These perturbations were analyzed recently by Ye
Chang.17 That work, however, addresses very different se
where constant volume of the fluid is assumed, so that
fluid is thinning behind the front as time progresses. T
thinning introduces additional set of effects that are beyo
the scope of this work.

Now we briefly discuss the influence of the precurs
perturbations in the constant flux case. From 1
simulations22 we know that the height of the capillary ridge
which is related to instability development, can be modifi
by the perturbations of the precursor. Here we show t
localized 2D perturbations could really lead to the onset
instability. To illustrate this point, Fig. 22 presents how t
perturbations@shown in Fig. 22~a!# influence the unperturbed
fluid film. These perturbations of the precursor are charac
ized by their extend in thex and y directions~2.061.0!, x
coordinate~1261.0!, the distance between the perturbatio
in the y direction ~761.0!, and the depth@~0.560.1!b#. In
addition there is a smooth transition region around each
turbation. The parameters are chosen randomly in the g
range; we do not present here a systematic study of the
fluence of these parameters on the instability, but just sh
that the instability can be induced by this type of perturb
tions. They are distributed close to each other in they direc-
tion in order not to perturb the system with the waveleng
close to the wavelength of maximum growth from LSA; b
perturbing with relatively high-frequency noise, we force t
system to decide on emerging wavelengths on its own.

The similarity of the emerging patterns presented in F
22 and the earlier results obtained by perturbing the con
line ~i.e., Fig. 15! clearly shows that the precise mechanis
of imposing perturbations is not important. In particular, t
emerging wavelengths~distance between the fingers! are ap-
proximately the same as obtained before@viz. Figs. 15, 16,
and Eq.~17!#. Analogous results are obtained for flows on
incline, whereDÞ0. We emphasize that constant volum
flow on real surfaces, where~i! fluid is continuously per-
turbed and~ii ! fluid is thinning, opens additional set o
questions related to the positioning of the perturbatio
as pointed out in Ref. 17. We will address this questio
elsewhere.

ll
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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VI. CONCLUSION

Through series of computations, we have obtained
sults for the wavelengths and profiles of the patterns
develop when a completely wetting fluid flows down an
cline. The agreement with experiments is remarkably go
showing that the lubrication model with a precursor film ca
tures the most important physical mechanisms that determ
the origin of the instability.

There are two main conclusions of this work. First, t
inclination angle significantly influences the stability of th
contact line in the case of spreading of a completely wett
fluid on an inclined plane. Large inclination angles lead
fingers with almost straight sides, while smaller inclinati
angles lead to patterns with much more oblique sides, res
bling experimentally observed saw-tooth patterns. Seco
the question of surface coverage is not necessarily relate
the shape of the emerging patterns. In all of our simulatio
the roots of the patterns move, leading to a complete sur
coverage. The shape of the patterns can, however, vary
siderably. This result implies that partially wetting fluid
required for partial surface coverage, in agreement wit
number of experimental observations. The~triangular!
shapes of the patterns that are obtained in the experim
which use wetting fluids are, however, influenced not only
the fluid wetting properties, but also by~usually small! incli-
nation angles of the substrate.

Another interesting result of our computations is the
dication that a nontrivial traveling wave solution may ex

FIG. 22. Flow over perturbed precursor. Part~a! shows~magnified! region
of the precursor region that is perturbed; the front of the main body of
fluid is shown to the right~aroundx'7!. Note that the scale of the plot i
significantly extended in thex direction relative toy; average shape of the
perturbations is circular. Part~b! shows the snapshots of the contact line
dt52 intervals. Note the similarity to the results shown in Fig. 15. All t
parameters are as in Fig. 15, except for the pertubations of the contact
that are absent here.
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for the flow down an inclined plane, with the steady-sta
lengths of the pattern depending on the precise values of
flow and fluid parameters. It would be of interest to perfo
careful experiments to verify this prediction. Complementa
theoretical research should show existence and stability
these steady solutions. Our computational observation
the existence of these solutions depends on the param
D(a), and on the size of the computational domain, impl
a rich structure of this dynamical system that should be a
lyzed in a more fundamental manner. The results prese
here provide useful guidance in this direction.

In this work, we concentrate on the situation where t
fluid thickness is kept constant far behind the apparent c
tact line, since this configuration allows for understanding
many features of the problem without the additional comp
cation introduced by the thinning of the fluid in the consta
volume case. In the present case, we show that the e
mechanism of imposing perturbations in the system is no
major importance; in particular, we obtain similar emergi
wavelengths independently on whether we perturb con
line, or the precursor film. We continue our research of b
constant volume case, and of the dynamics of partially w
ting fluids, with the hope of understanding the interplay b
tween fluid wetting properties, gravity, and fluid thinnin
that determines the nature of the instability and the surf
coverage.
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