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We explore the Saffman-Taylor instability of a gas bubble expanding into a shear thinning liq
in a radial Hele-Shaw cell. Using Darcy’s law generalized for non-Newtonian fluids, we perfo
simulations of the full dynamical problem. The simulations show that shear thinning significan
influences the developing interfacial patterns. Shear thinning can suppress tip splitting, and pro
fingers which oscillate during growth and shed side branches. Emergent length scales show reaso
agreement with a general linear stability analysis. [S0031-9007(97)05226-5]
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Complex fluids, such as liquid crystals [1], polymer so
lutions and melts [2], clays [3], and foams [4], display ric
non-Newtonian behavior—viscoelasticity, shear thinnin
and thickening, boundary or flow induced anisotropy—
whose nonlinear effect on flow is understood at best ph
nomenologically. Hele-Shaw (H-S) flow between tw
closely spaced plates has been used to study such flu
inertia is negligible, and the resulting description is sim
plified by the high aspect ratio geometry. Such “thin-gap
flows of non-Newtonian liquids are also relevant to indu
trial processes such as injection molding [5] and displ
device design [6]. Interest stems also from the close an
ogy between Newtonian H-S flow and quasistatic solidi
cation; the Saffman-Taylor (S-T) instability of the driven
fluid-fluid interface plays the same role as the Mullins
Sekerka instability of the solidification front [7]. Feature
usually associated with solidification, such as the grow
of dendritic fingers and side branching, have also be
observed in Newtonian fluids with imposed anisotrop
say by scoring lines on the cell plates [8]. However, e
periments using non-Newtonian or anisotropic fluids ha
shown that solidification structures, such as snowflake p
terns in liquid crystal flows [1], or needle crystals in poly
meric solutions [2], can be induced by the bulk properti
of the fluid itself, without any imposed anisotropy.

In [9], we conjectured that shear thinning—a prop
erty of polymeric liquids and effectively of nematic liquid
crystals in certain geometries—was a crucial ingredie
in suppressing tip splitting, and might lead to the appea
ance of dendritelike structures in complex fluids. In th
scenario, the tip of a finger lies in a region of high shea
and thus lower viscosity, which causes it to advance w
higher relative velocity than surrounding portions of th
interface, suppressing the spreading of the tip. To stu
this, we derived from first principles a natural generaliz
tion of Darcy’s law which takes into account shear thin
ning (or thickening) in an isotropic fluid. In support o
our conjecture, we showed that for a gas bubble expa
ing into aweaklyshear thinning fluid, the S-T instability
is modified to give increased length-scale selection.
0031-9007y98y80(7)y1433(4)$15.00
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this Letter, we use the generalized Darcy’s law to perfor
fully nonlinear simulations of a bubble expanding into
strongly shear thinning liquid. The simulations demon
strate that shear thinning significantly modifies the evol
tion of the interface, and can produce fingers whose
splitting is suppressed, and which have dendritic appe
ance. The resulting patterns are often similar to those o
served in experiments [1–4,10,11]. Length scales fro
our linear stability analysis are consistent with simula
tional results. Finally, we give a morphological phase di
gram in terms of flow and fluid parameters.

Formulation.—Consider a gas bubble expanding und
applied pressure into a non-Newtonian fluid in a radial H
cell. The fluid domain is an annular regionV with inner
boundaryGi and external boundaryGe. Neglecting inertia,
we use the Stokes equations with shear-rate depend
viscosity,

=p ­ = ? sssmsjSj2dSddd, = ? v ­ 0 . (1)

Here p is pressure,S is the rate-of-strain tensor for the
fluid velocity vsx, y, zd ­ su, y, wd, with z the “short,”
cross-gap direction, andjSj2 ­ trsS2d. We follow [12]
and use the viscosity modelmsjSj2d ­ m0fast2jSj2d, with
fasj2d ­ s1 1 aj2dys1 1 j2d. Here t is the longest
(Zimm) relaxation time of the fluid,m0 is its zero shear-
rate viscosity, anda measures shear dependence:a ­ 1
is Newtonian,a . 1 gives shear thickening, anda , 1
gives shear thinning. In practice, most non-Newtonia
fluids are shear thinning.

The flow is simplified by the small aspect ratioe ­
byL ø 1, whereL is a typical lateral length scale, andb is
the plate separation. To nondimensionalize, the lateral a
vertical distances are scaled byL andb, respectively. The
scale for pressure is taken asp̄ye, wherep̄ye is the driving
(gauge) pressure. The natural velocity and time scales
thenUc ­ eLp̄ym0 andTc ­ m0yep̄. This is the scaling
required for shear thinning of the fluid to be apparent [13
At leading order ine, in [9] we derived from Eq. (1)
a generalized Darcy’s law for the gap averaged, late
© 1998 The American Physical Society 1433
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21

12m̄asWe2j=pj2d
=p, and = ? u ­ 0 , (2)

where now= ­ s≠x , ≠yd. We ­ tytflow is a Weissenberg
number, with tflow a typical inverse shear rate in the
short direction. The viscositȳma is constructed fromfa,
and shares its monotonicity properties; i.e., for a she
thinning fluid m̄a decreases with increasing argumen
In other work on polymeric flows, Bonn and co-worker
[12] have proposed a model where the viscosity depen
upon squared velocity; their model follows from ours [9]
Finding m̄a uniquely requires thata . 1y9 [9].

We have also derived Eq. (2), again with viscosityfa,
from the Johnson-Segalman-Oldroyd (JSO) viscoelas
fluid model for polymeric flows [14]. We find that the
model includes normal stress differences, but no elas
response, so long as We, Os1d. The details of this
derivation will be presented elsewhere [13].

An additional dimensionless parameter is the capilla
number, Ca­ 12m0

ÙR0R2
0ysgb2d, measuring the relative

strength of capillary and viscous forces. Hereg is surface
tension, with length and velocity scales now specified f
the case of an expanding circular bubble of initial radiusR0

and velocityÙR0 (i.e., We­ t ÙR0yb). While Ca and We are
defined by their values att ­ 0, they are easily understood
in terms of measurable experimental quantities.

From Eq. (2), the pressure satisfies the nonline
boundary value problem inV,

= ?

√
=p

m̄asWe2j=pj2d

!
­ 0, pjGi ­ 1 2

ki

Ca
,

pjGe ­
ke

Ca
,

(3)

where the standard Young-Laplace boundary conditionk

is lateral curvature) is assumed atGi andGe. Using this
simple boundary condition, we have ignored complicate
flows in the neighborhood of the meniscus [15,16], and
the case of polymeric flows, the possibility of a stretch
coil transition [11]. Finally, the motion of the interfaces
Gi,e is given by the condition that they move with the fluid
velocity.

Note that We can be removed from our dynamical sy
tem by the rescalingsx, yd ! Wesx, yd, t ! We2t, and
Ca ! CayWe. However, to retain a fixed physical length
scale for our initial data, we retain a We dependence
what follows.

Linear stability analysis.—In Newtonian flow, the lin-
ear stability of an expanding circular bubble is determine
by the capillary number Ca. The competition of capi
lary and driving forces gives an azimuthal wave number
maximum growth,mNewt

max , with surface tension stabilizing
short wavelengths. In [9], we derived an analytical expre
sion for the growth rate in the limit of weak shear thinning
d ­ 1 2 a ø 1. This showed that above a moderate C
1434
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shear thinning tightens the band of unstable modes, a
can yield higher growth rates nearm ­ 0. The mode of
maximum growth is also shifted to lower wave number
mmax ø mNewt

max s1 2 Kd We2d (K a constant), and shorter
wavelengths are further stabilized. This suggests enhan
length-scale selection, and supports the postulate that sh
thinning can lead to suppression of tip splitting. These o
servations are consistent with Fig. 1(a), which shows n
merically calculated growth rates. Figure 1(b) shows t
length scale of the most unstable linear mode, as a funct
of Ca, in good agreement with the scalingL , 1yCa1y2,
which holds well for Newtonian fluids [17].

Simulation.—Equation (3) is much more difficult to
solve than the analogous Newtonian problem, where
pressure is harmonic, and efficient boundary integral me
ods are available [18]. Here the pressurep satisfies a non-
linear elliptic equation which must be solved everywhe
in V. Computations are done on a Lagrangian grid whi
conforms to and evolves with the interfaces. We use Ne
ton’s method to solve for the pressure. The requireme
of high spatial resolution of the interface, coupled wit
time-stepping stability and accuracy constraints, produc
computationally intensive problem. To decrease this co
a fourfold symmetric initial bubble shape is chosen, an
this symmetry is enforced in the code.

Figure 2 shows the change in pattern formation asa de-
creases for fixed Ca and We (a ­ 1 gives Newtonian flow
for any We). The typical scenario for a Newtonian fluid i
seen in Fig. 2(a). The initial shape is a circle perturbed
a m ­ 4 sine wave of amplitudea (ayR0 ­ 0.1). Snap-
shots of the bubble at equal time intervals show grow

FIG. 1. (a) The growth ratesm for We ­ 0.15, Ca ­ 240.
(b) Fora ­ 0.15, and We­ 0.15, the length scale of the most
unstable linear mode (dashed), and emergent length scale f
simulations (dots). The solid curve isAyCa1y2, where A is
taken from the first data point.
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d

FIG. 2. The dynamics of bubble interfaces for a Newtonia
fluid (a) and shear thinning fluids (b)–(d).

of the unstable fourth mode (in agreement with linear st
bility analysis) into a petal. The petal widens, then spli
as its radius of curvature becomes larger than the wa
length of the unstable modes [17,18]. (This Newtonia
simulation uses our general code; much longer simu
tions can be done using boundary integral methods [18
In Fig. 2(b), with some shear thinning, there is delaye
splitting of the tip, and the resulting fingers have reduc
spreading. With greater thinning, Fig. 2(c) shows th
even the initial splitting is suppressed, and the emergen
of single fingers is seen. The inset plot shows tip cu
vature, which oscillates in time. While more apparent
Fig. 2(d), each oscillation is associated with the suppre
sion of a nascent splitting, and produces side branches
hind the propagating tip. Figure 2(d) shows the evolutio
for larger Ca and smaller We. Higher Ca enhances t
growth of shorter wavelengths, and leads to more pr
nounced side branching. In this case, larger We gives
initial splitting.

Our patterns are very similar to those found in simu
lations of Newtonian H-S flow with anisotropic boundar
conditions [19], as well as to local solidification model
with anisotropy [20]. Recent experiments with foams [4
(where elastic properties might be of importance) and
polymeric liquids [2,10] can also produce patterns simil
to our simulations.

To demonstrate how these structures are produced
shear thinning, and to substantiate our original postula
Fig. 3 shows viscosity contours and velocity vectors
the flow in Fig. 2(d), at the last time shown. As expecte
low viscosities at the finger tips enhance their velocit
while away from tips motion is suppressed. The finge
still show a tendency towards tip broadening due to t
large driving pressure (large Ca). Likely it is the interpla
of these effects which gives the curvature oscillations a
n
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FIG. 3(color). Contour plot of the viscosity of the driven
fluid and vector plot of its velocity (We­ 0.15, a ­ 0.15,
Ca ­ 480).

side branching. The similarity to dendrites in solidifica-
tion is striking, and while oscillating dendrites have been
observed [21], their tips are typically stable, with constant
curvature. More relevant are oscillations in propagating
fingers observed in flows of dilute polymer solutions in a
channel geometry [11], though these could be associate
with a stretch-coil transition.

We have explored further thesCa, We, ad parameter
space. Figure 4 shows typical patterns in one slice (a ­
0.15). From such diagrams, we can formulate conditions
for the suppression of tip splitting, and understand the
influence of Ca, We, anda on the dynamics of the
interface.

(i) To suppress tip splitting, the fluid has to be strongly
shear thinning; small values ofa yield narrow fingers,
as in Figs. 2(c) and 2(d). For our initial data there is a

FIG. 4. Morphological phase diagram for pattern formation in
a strongly shear thinning fluid (a ­ 0.15).
1435
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critical value (acrit . 0.25) above which the initial petal
always splits, independently of other parameters. Th
behavior is consistent with experiments with water base
muds [3], where increased colloid concentration give
stronger shear thinning and yields narrowed fingers.

(ii) We determine which part of the viscosity curve
governs the response of the fluid. Figures 2(c) and 2(d
where nonsplitting fingers are obtained, show a situatio
where viscosity varies considerably along the interfac
This seems to be a necessary condition for suppression
tip splitting. There is a range in We for this behavior, an
its size depends strongly ona; asa increases, this range of
We decreases. Also, an increase of Ca shifts this windo
towards lower We (Fig. 4). And so, at increased pumpin
pressure, the fluid should have a shorter relaxation time
nonsplitting tips are to be observed. This effect has be
observed in experiments with liquid crystals [22] wher
the driving pressure was varied: At low driving pressure
the pattern was Newtonian (corresponding here to sm
Ca and We—regionA in Fig. 4). At intermediate driving
pressures, the tips did not split (as in regionB), and finally,
even higher driving pressures (large Ca and We) result
again in a tip splitting phase (as in regionC). These
observations agree very well with our results.

(iii) The increase of Ca has two effects. First, as in
Newtonian fluid, an increase of Ca excites shorter wav
lengths, leading to shorter length scales; Fig. 1(b) show
length scales from our simulation, together with a fit o
the formAyCa1y2. While it is not clear that this scaling is
satisfied, there is reasonable agreement in magnitude w
the linear theory. A decrease in finger width in a radia
geometry was observed in some of the first experimen
done with shear thinning fluids [23], where reducing th
plate separationb gave a larger Ca, though this increase
We as well. We find also that an increase of Ca abov
ø500 narrows the range in We where fingers do not sp
(viz. Fig. 4).

Detailed experimental studies combined with sophist
cated modeling are necessary for a detailed understand
of the flow behavior of complex fluids. In this Letter,
we have shown that shear thinning alone can suppre
tip splitting in a radial Hele-Shaw cell, and produce den
dritic fingers. This agrees with preliminary experimenta
results with polyethylenoxide (PEO) solutions [24]. In
our approach, we have neglected several potentially im
portant effects. For very strongly shear thinning polymer
flows, there is the possibility of slip-layer formation, and o
strong elastic response. In principle, these are accoun
for within the JSO viscoelastic model, and have been th
subject of theoretical work [25]. A more thorough under
standing is needed of flows in the neighborhood of the i
terface, as has been reached for Newtonian H-S [15], a
partially for viscoelastic [16] flows.
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