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ABSTRACT

The 
ow of a 
uid con�ned between two solid plates (Hele-Shaw cell) is of considerable
interest in a variety of applications. Further interest in two phase 
ow in this geometry
stems from the close analogy between the dynamics of 
uid-
uid interface and the propaga-
tion of the solidi�cation front. While the 
ow of Newtonian 
uids is rather well understood,
it is much more complicated to compute 
ows of non-Newtonian 
uids. We �nd that the
dense-branching morphology of Newtonian liquids may be replaced by dendritic �ngers with
stable tips and sidebranches, and discuss resulting length scales.

INTRODUCTION

Flows of complex, non-Newtonian 
uids are of considerable technological importance.
In particular con�ned thin-gap 
ows of non-Newtonian 
uids are relevant to industrial
processes such as injection molding or display device design [1]. A two-phase 
ow in this
setting is a scienti�cally important one, given the close analogy between the Sa�man-Taylor
instability of driven Newtonian 
uid with quasi-static solidi�cation (and the Mullins-Sekerka
instability [2]), electrochemical deposition [3], and many other physical problems.

In this work, we concentrate on the interfacial dynamics of a gas bubble expanding
into 
uid in a radial Hele-Shaw cell (see Fig. 1). When the 
uid is Newtonian, a dense
branching pattern morphology is observed [4], as the outcome of the nonlinear development
of the Sa�man-Taylor instability. It is characterized by tip-splitting of the interface and the
formation of branched structures. On the other hand, experiments performed with complex
liquids such as liquid crystals [5], polymer solutions and melts [4], clays [6], and foams [7],
have shown that the structures reminiscent of solidi�cation ones - dendritic �ngers, side
branching, can be induced in these 
uids. One property shared by these di�erent liquids is
that they are shear thinning, and we will concentrate on this property. Elastic response of
the 
uid can also be an important e�ect, though we will not consider it here.

We start from the generalized Darcy's law governing the bulk 
uid 
ow [8]. Combined
with appropriate boundary conditions, this yields a nonlinear, elliptic boundary value prob-
lem (BVP) for the pressure in the driven 
uid. Fully nonlinear, time dependent simulations
of a bubble growing into a shear thinning 
uid show that shear thinning in
uences consid-
erably the evolution of the interface, and in agreement with experiments, can lead to the
formation of �ngers which do not split, and can resemble the dendritic structures observed
in solidi�cation.

In this paper we give an outline of our methods, combined with new results related to
experimentally measurable quantities, such as observed length scales and the �nger veloc-
ity. The reader is referred to [8, 9] for the formulation of a Darcy's law, and more detailed
explanation of the role which shear thinning plays in pattern formation, and to [10] for the
relation of the model employed here to more general viscoelastic 
uid models.
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Figure 1: Hele-Shaw cell

THEORY

Darcy's law for a non-Newtonian 
uid

We use the 
uid model in which non-Newtonian character of 
uid enters through rate-
of-strain dependence of the 
uid viscosity

�
Dv

Dt
= �rp+r �

�
�(jSj2)S

�
; r � v = 0 ; (1)

where S is the rate-of-strain tensor, and jSj2 = tr(S2) =
P

ij S
2

ij. The viscosity is taken
to be given by �(jSj2) = �0(1 + �� 2jSj2)=(1 + � 2jSj2). Here � is the relaxation time of
the 
uid, �0 its zero shear rate viscosity, and � measures shear dependence: � = 1 gives
Newtonian response, � > 1 gives shear thickening, and � < 1 shear thinning. In practice,
most non-Newtonian 
uids are shear thinning, and we concentrate on this case.

The 
ow in a Hele-Shaw geometry is signi�cantly simpli�ed by the small aspect ratio
� = b=L � 1. The Reynolds number is small, so that inertial terms could be neglected,
and the velocity gradients in the short, z, direction are much larger than the lateral ones.
Keeping only the terms of O(�), and averaging over the gap width, one obtains a generalized
Darcy's law applicable to a shear thinning 
uid (the choice of appropriate sales is discussed
in [8, 9])

u = � 1

12 ���(We2jrpj2) rp ; and r � u = 0 ; (2)

where r is the lateral gradient operator, and u is gap averaged 
uid velocity. Weissenberg
number, We = �=�flow, measures the ratio of the time scale of the 
uid, � , and the relevant
time scale imposed by 
ow, �flow. The viscosity ���(We2jrpj2) is constructed from � and
shares its monotonicity properties, i.e., if the 
uid is shear thinning then ���(We2jrpj2)
decreases monotonically with increasing argument [8].

Expanding bubble problem

Now we apply the resulting equations to the problem of an air bubble expanding into a
non-Newtonian 
uid. Additional nondimensional parameter, capillary number (Ca), which
measures the ratio of capillary to viscous forces, enters through imposed Laplace-Young
boundary conditions. To facilitate comparison with experiments (see [4] and references



therein), we de�ne Ca and We

Ca =
12�0 _R0R

2

0


b2
; and We =

� _R0

b
; (3)

where it is assumed that all the quantities can be varied independently. The lateral length
scale is chosen as the initial radius of the bubble, R0, and the velocity scale is the initial
bubble velocity, _R0. At the boundaries, the pressure jump [p] is given by [p] = Ca�1� for
the pressure jump [p], where � is the lateral curvature. A nonlinear BVP for the pressure
follows [9]

r �
 rp
���(We2jrpj2)

!
= 0; pj�i

= 1� �i
Ca; pj�e

=
�e
Ca ; (4)

where �i;e stand for the internal and external 
uid boundaries. The motion of the interfaces
follows from the requirement that they move with local 
uid velocities.

Numerical methods

The full evolution problem, Eq. (4), is much harder to solve than the corresponding
problem for a Newtonian 
uid, where the pressure is harmonic. In the non-Newtonian case,
p satis�es the nonlinear BVP, Eq. (4), and must be solved for in the whole domain. Since
the problem is driven by the curvature of the boundaries, high spatial resolution is required.

To solve for the pressure, we use a Lagrangian grid which conforms to the interfaces and
moves with the 
uid. Ones the pressure is obtained, velocity of the 
uid (and of the bound-
aries) is obtained using Darcy's law, Eq. (2). As initial data, we take the interior interface
�i as a circle perturbed with a single azimuthal mode m = 4, and the outer boundary �e

as a circle. For e�ciency, we impose a four-fold symmetry on the initial bubble shape, and
the solution. More details about computational methods are given in [9, 10].

RESULTS

The e�ect of shear thinning on the dynamics of the interface

Figure 2 shows the simulation of an expanding bubble for Newtonian and non-Newtonian

uid, plotted at equal time intervals. In Fig. 2a we observe typical pattern formation for a
Newtonian 
uid, where the unstable mode is growing into a petal, which widens, and then
splits into two as its radius of curvature increases, in agreement with linear theory [11]. The
bubble evolution in a strongly shear thinning 
uid is strikingly di�erent, as is illustrated in
Fig. 2b. The e�ect of shear thinning is to suppress the tip splitting of the outwardly growing
petal. As the petal expands outwards, it appears to near a splitting, but then \refocuses",
leaving behind \side-branches", and continues to grow outwards.

In [9] it is shown that the lowest viscosity appears at the ends of the petals, and then
increases sharply as one moves away from the tips, and is highest within the fjords, where it
is nearly unity (the \zero shear" viscosity is normalized to one). It is this phenomena that
results in the narrowed petals: shear thinning e�ect increases the local 
uid velocity at the
tips. This e�ect is limited by capillarity, which seeks to lower the length to area ratio, and
which is also likely related to the production of \side branches" left behind the advancing
tip.

There are three (nondimensional) parameters which determine the dynamics of the in-
terface: Ca, which measures the relative strength of surface tension and viscous forces, and
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Figure 2: The snap-shots of the evolving bubble interface for (a) Newtonian 
uid and (b) strongly

shear thinning 
uid (Ca = 480 for both simulations, � = 0:15, We = 0:15 for shear thinning one).
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Figure 3: The velocity of tip propagation. Solid lines show tips which split; broken line
shows non tip-splitting �nger. The arrows show the point where curvature of the tip changes
sign.

We and �, which determine shear thinning properties of the 
uid. Flows characterized by
some combination of these parameters lead to the formation of �ngers whose tips do not
split (as shown in Fig. 2b); di�erent parameters might lead to production of tip splitting
petals, resembling the patterns characteristic for a Newtonian 
uid. Detailed discussion of
the in
uence which shear thinning character of the 
uid has on the pattern formation, as
well as detailed parametric dependence of the observed patterns, are given in [9, 10].

Another e�ect of shear thinning is to modify the velocity of advancing �ngers/petals.
Figure 3 shows the tip velocity for a Newtonian 
uid, and for two choices of parameters
characterizing shear thinning 
uids; the latter two di�er only in Ca. The choice Ca = 240
leads to formation of �ngers which do not split, and is characterized by the tip velocity
which is approximately constant. The other choice, Ca = 600, leads to a tip splitting petal,
whose velocity is continuously decreasing. This e�ect has been noted in the theoretical
work [15], where the curvature of the �nger tip was held constant arti�cially.
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Figure 4: The dependence of the length-scale l on plate separation b (a), and driving pressure
�P (b). Here b0 (a) and �P c (b) are the plate separation and the driving pressure which
give Ca = 240 and We = 0:15. Linear stability results (dashed) [9, 10], simulation results
(dots) and �ts l = kb (a), and l � k0(�P=�P c)�1=2 (b) (solid) are shown. The constants
k; k0 are determined from the data points b = b0 (a), and �P = �P c (b) (� = 0:15).

Emerging length-scales

A typical length-scale (l) of the patterns which develop in a radial Hele-Shaw 
ow
for Newtonian 
uids is determined by a single parameter, the capillary number Ca. For
large Ca, linear stability suggests that a length-scales associated with the initial growth of

the patterns is given by �m � 2�R
q
3=Ca [11], where �m is the wavelength of the most

unstable mode, and R is the time-dependent radius of the expanding bubble. We look into
our simulation results for a similar length scaling in shear thinning 
uids.

In experiments [12], emerging length-scales have been measured as the gap width b
is varied. These results suggest that the length-scale scales roughly linearly with b. For
Newtonian 
uids this observation con�rms the result of linear stability, since Ca � 1=b2 if
the characteristic velocity is �xed independently of b. However, the 
ow also depends up the
Weissenberg number, We, which is itself a function of b. So, one should modify both Ca
and We in order to obtain realistic comparison with experimental results. These resulting
length-scales are given in Fig. 3a. While it is not obvious that scaling l � b is satis�ed,
there is a good qualitative agreement of the simulations and the experimental results.

The driving pressure is another control parameter whose in
uence on emerging length
scales can be explored. In experiments [6, 13] increasing the driving pressure typically
decreases the observed length scales. Figure 3b compares the length scales obtained from
our simulations to the results of linear stability [9, 10], and to a �tting function of the form
l � 1=

p
�P , where �P is the driving pressure. The motivation for this particular �t arises

from analogy with Newtonian 
uids where l � 1=
p
Ca, and Ca � �P . Here we observe that

linear stability theory and simulational results agree rather well at smaller driving pressures.
For larger values of �P , the length-scales resulting from linear stability analysis saturate
to a constant, while the results of the simulations �t l � 1=

p
�P very closely. We hope to

verify this prediction experimentally [14].



CONCLUSION

In this paper we have shown that, under certain assumptions, 
ow in a Hele-Shaw cell
of a complex viscoelastic 
uid simpli�es to that of a generalized Newtonian 
uid. Full
numerical simulations of the two phase (liquid/gas) 
ow show that shear thinning behavior
of the driven 
uid modi�es signi�cantly the morphology of the patterns, relative to those
for Newtonian liquids, by suppressing tip-splitting. Furthermore, the varying of length
scales emerging from our simulations, as parameters are changed, is in good qualitative
agreement with those observed in experiments. In particular, we observe in our simulations
that the typical length scale of the patterns scales with driving pressure as l � �P�1=2. This
prediction, which is of considerable importance in technological processes such as injection
molding or oil recovery is still to be veri�ed experimentally.

We are continuing our work in few directions: improvement in numerical methods, for-
mulation of more realistic boundary conditions, and extension of our model to the 
uids
characterized with di�erent rheological properties. By combining experimental, theoretical
and computational e�orts, we hope to further contribute to the understanding of complex

uids and pattern formation.
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