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Probing dense granular materials by space-time dependent perturbations
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The manner in which signals propagate through dense granular systems in both space and time is not well
understood. In order to probe this process, we carry out discrete element simulations of the system response to
excitations where we control the driving frequency and wavelength independently. Fourier analysis shows that
properties of the signal depend strongly on the space-time scales of the perturbation. The features of the
response provide a test bed for models that predict statistical and continuum space-time properties. We illus-

trate this connection between microscale physics and macroscale behavior by comparing the system response

to a simple elastic model with damping.
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I. INTRODUCTION

The issues of stress and energy transport in dense granular
matter (DGM) are of significant importance in applications
ranging from land mine detection to oil exploration, leading
to a large body of research on the basic physical mechanisms
involved. A major focus of recent work has been on the
material response to static forces, typically involving small
samples exposed to time-independent pointlike perturba-
tions. A broad range of models has been proposed, including
diffusive [1], wavelike [2-4], or elastic response [5]. Tradi-
tional continuum models [6,7] commonly assume an elastic
or elastoplastic response. This collection of models is funda-
mentally at odds with each other, since the (possibly con-
tinuum limit) equations for these different descriptions are of
parabolic, hyperbolic, or elliptic nature with respect to their
spatial variables. Also important is the fact that a system
response depends on the scale and the state of the system:
wavelike response in static systems occurs on short (meso)
scales, but elastic response on longer ones [5]. For dense
systems, theory and experiment [5,8] suggest that an elastic
description is best, but near jamming threshold, a hyperbolic
description may apply [4].

Changing to dynamical processes adds a time scale,
something that is not addressed in the works noted above.
Hence, the questions that we seek to address are: in the pres-
ence of a time-dependent process, what is the nature of force
transmission; what are the relevant time and length scales?
The natural domain for probing these questions is sound
propagation, which has been described by effective-medium
approaches [7,9] where the motion is described by smooth
local deformations. However, this approach is known to be
incorrect in at least some situations [10] due to the local
fluctuating (nonaffine) particle motion. We expect that non-
affine and other mesoscale phenomena will be manifested by
a sensitivity to length and time scales for sound propagation.
In order to probe both time and length scales, we inject sig-
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nals at well-defined frequencies and with well-defined wave-
lengths in the work described here.

Separate control of spatial and temporal properties of the
imposed signals is one of the distinguishing features of the
presented results. This approach builds on a recent body of
work where experiments and simulations use spatially uni-
form perturbations to probe pressure dependence of sound
speed and the role of microstructure including force chains
on signal propagation [10-13]. To put this in perspective, we
note that very different issues arise for one-dimensional (1D)
particle chains, which are characterized by nonlinear high-
order wavelike continuum models [14]. An extension of
these results to higher dimensions and realistic granular me-
dia remains to be carried out. Some of initial attempts to do
so have been discussed recently in the context of land-mine
detection [15].

In this paper we describe the response of DGM to space-
time dependent perturbations with the goal of understanding
relevant length and time scales for stress and energy trans-
port. We concentrate on the regime where the imposed fre-
quencies are low and the wavelengths are large compared to
the particle size. We then compare results from discrete ele-
ment (DEM) simulations to expectations based on a simple
continuum picture that includes elastic and diffusive behav-
iors.

II. SIMULATIONS

We choose a relatively simple geometry in two spatial
dimensions with grains contained between two rough walls
(up-down) with periodic boundary conditions (left-right).
The walls set the volume fraction, »=0.9. The particles are
polydisperse disks with radii ranging over =5% about the
mean. For simplicity, we put gravity to zero. Particle-particle
and particle-wall interactions are given by a soft-sphere
model that includes damping, dynamic friction, and rota-
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tional degrees of freedom (see, e.g., [16]). As appropriate for
two-dimensional (2D) disks considered here, we use linear
springs [17]. This model introduces the collision time, 7., as
one of the relevant time scales. Here, f.q =7/ w3—(y,/2)>
and wy=v2k,/m, where k, is the spring constant, m is the
particle mass, and the damping 1y, is related to the restitution
coefficient e, by y,=-2 In(e,)/t., [16]. The walls are made
of particles that are rigidly joined, creating an impenetrable
boundary. More detailed explorations of the influence of the
DEM model parameters, or of the force model itself (e.g.,
presence of static friction), are considered elsewhere [18];
here we note that our preliminary results show only weak
dependence of the response of the system on the details of
the force model or on the parameters. For example, the in-
fluence of friction is very minor: the features of the results
that follow are practically the same with or without frictional
effects.

The system is prepared by very slow compression that is
carried out by moving the upper wall from some initial po-
sition downwards until the required v is reached. The par-
ticles are initially placed on a lattice and given random initial
velocities. The compression is slow to ensure that no mean-
ingful gradients of volume fraction or of the stresses remain
in the system. It has been verified that the results that follow
are independent of the preparation procedure. Then, after re-
laxing the system, the upper boundary is fixed and the lower
boundary is perturbed by a standing-wave type of perturba-
tion

7(x) = zg + A sin(wi)sin(kx), (1)

where A,w=2mf and k=2m/N are the amplitude, angular
frequency, and wave number.

The simulation parameters are as follows. The force con-
stant in the particle interaction model is k,=kgng/d, where g
is the acceleration of gravity and m and d are the average
mass and diameter of a particle. To help interpretation we
note that k=4000 (the value that we use here) corresponds
approximately to the material properties of photoelastic disks
used in [8]. The “system” particles that are allowed to move
and the particles that build the oscillating wall are character-
ized by e,=0.9 and by the coefficient of friction u;=0.1. The
upper wall particles are given e,=0.1 and w,=0.9. These
(monodisperse) upper wall particles are made more frictional
and inelastic in order to reduce reflection effects. The com-
putation domain consists of 40 000 particles. The x dimen-
sion is L=250d; at the volume fraction of 0.9, the z dimen-
sion of the system is approximately 130d. The imposed
perturbation is characterized by the amplitude A=0.6d and
by varied frequency, f, and wavelength, N. The frequency
range is such that the following conditions are satisfied:
1/t <f<c*/d, where ¢* is the speed of sound in the solid.
The considered wavelengths are much larger than the particle
diameter. We use a large system so to reduce the boundary
and finite-size effects. In addition, for the specified param-
eters, some key features are only visible in such a large sys-
tem. This is also a reason for limiting our current analysis to
2D geometry.

Figure 1 shows a system snapshot just after activating the
perturbation at the lower boundary. Colors show forces on
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FIG. 1. (Color online) Snapshot of the simulation domain soon
after perturbation of the lower boundary has been activated. The
figure shows the forces (normalized by the mean) that the particle
experience at a given time. The upper wall is static and the lower
one performs standing-wave type of motion. 40 000 particles.

particles, with blue/dark corresponding to low and green-
yellow/light to large forces. We note the force chains in the
interior of the domain, as typically observed for DGM. We
note that we have observed some rearrangements of the con-
tacts between particles, especially close to the perturbation
itself. However, we have not observed any significant differ-
ences in the main properties of signal propagation as A is
modified, suggesting that this contact breaking and remaking
is not crucial in determining the properties of propagating
signal.

While force chain properties are of significant interest in
understanding signal propagation in DGM (see, e.g.,
[12,13]), we focus here on quantities that can be averaged
over a volume which is small compared to the system size,
but that still contains relatively large number of particles;
typically we use the network of 64 X 64 rectangular cells for
spatial averaging. We also average over time intervals long
compared to 7., but short compared to 1/f. The results do
not depend on the details of the averaging procedure for the
conditions specified above.

We concentrate on the local elastic energy, E, defined as
the cell average of the compression energies contained in the
individual collisions taking place in a given cell during the
specified time-averaging period. More precisely, elastic en-
ergy in a given cell / is defined by

Nl ny nc,j

El = LI_C[E 2 [xj,c]27 (2)

Nty 2 121 o1 e=1

where x; . is the compression of particle j due to the collision
¢, normalized by the average particle diameter, d. Next, n; is
the number of particles in the cell / at a given time and 7, is
the average number of particles during the period of k=1 to
k=N,>1 time steps (in practice, the averaging time scale is
sufficiently short so that to a high degree of accuracy n;=1,).
Collisions may last over relatively long times, but even the
fastest collisions are well resolved due to the short time step.
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FIG. 2. (Color online) Energy fluctuations for a DEM simulation
for a space-time harmonic perturbation (A=250d and f=30 Hz)
applied at the lower boundary (yellow/light: high energy; blue/dark:
low energy). Data in this figure are obtained by averaging over
64 X 64 subdomains.

We also define an average elastic energy in the cell / as

N, npong; 2

2 E xj,c ’ (3)

Ninei=t j=1 c=1

k k
(Ep= _2Inc<xl>2 = ‘Zf”c

where (x;) is the average compression per collision and n, is
the average number of collisions per particle. The averaging
procedure is explained in more detail in [19], where it was
also shown that for the systems characterized by large vol-
ume fraction, as considered here, the elastic energy domi-
nates over the kinetic one.

Figure 2 shows E for different phases during one bound-
ary oscillation [20]. We note well-defined waves propagating
from the lower toward the upper boundary. The properties of
these waves are the main focus of this work.

Figure 3 shows Fourier transforms (FTs), E(z;f,\), of E
and of the elastic temperature, T=(E)>—(E?) [19]. We give
the dominant Fourier mode; spectral power data are similar.
These results were obtained by carrying our Fourier expan-
sion in the x direction of the cell-averaged data and then time
averaging over many (typically 30) perturbation periods,
thus increasing the signal-to-noise ratio. The transient behav-
ior is eliminated by discarding the data obtained during the
first few periods. We further verify the steady nature of the
results by carrying out selected simulations for much longer
times.

Figure 3 shows a well-defined propagation in the z direc-
tion. Clearly, E and T, which measures local deviations of E
from the mean, follow each other closely. One important
question is whether the system-selected wavelengths in the z
direction depend on the system size. To answer this question,
we have carried out simulations where both the domain size
and \ are halved in the x direction (therefore equal to 125d)
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FIG. 3. (Color online) Dominant Fourier mode (the one imposed
by the boundary motion) of the elastic energy and temperature (ar-
bitrary units) as a function of z, the distance from the oscillating
wall.

and then the results compared to the simulations where
L=250d and A=125d. Similarly, we have carried out simu-
lations where we increased the size of the domain in the z
direction (leading to simulations with approximately 50 000
particles). In both cases, we have found that the results are
independent of the system size, as long as the dimensions are
sufficiently large, as is the case with the simulations pre-
sented here.

Figure 4, giving E(z;f,\) as \ and f are varied, homes in
on the relevant scales. Figures 4(a) and 4(b) show that de-
creasing N\ causes significant dispersion: the signal ceases to
be wavelike and the length-scale information from the per-
turbation is lost. We note that the smaller N’s are still large
compared to a particle size. Figures 4(c) and 4(d) show that
increasing f also leads to the signal loss. For smaller f, the
signal is weaker and characterized by a larger z-direction
wavelength compared to Fig. 3. Thus, well-defined signal
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FIG. 4. Dominant Fourier mode of the elastic energy as the
frequency and wavelength of the perturbation are modified.
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propagates only in a narrow band of f’s and N’s. For even
smaller f’s, the energy input is insufficient to trace accu-
rately. We note that we have also carried out simulations with
an effectively infinite N, yielding a propagation speed con-
sistent with previous work concentrating on similar systems

[13].

III. CONTINUUM MODEL

We next compare these results to a model which includes
elastic behavior and diffusive damping. We chose such a
model since static force transmission well-above jamming
densities is, to date, best described in terms of an elastic
picture [5,8] and because we expect dissipative processes.
Future work should consider other possible models which
may be appropriate close to jamming transition or on shorter
length scales, as discussed in Sec. I. Assume that the space-
time properties of E (but similarly for pressure, temperature,
or a component of the stress tensor) are given by

1 0E

2 _i@___zo’ (4)
¢t Dot

which as D— becomes a linear wave equation often used
to describe wave propagation in elastic solids and as c— a
diffusion equation. A diffusion model was used to describe
signal propagation as a result of spatially uniform perturba-
tions, although typically for much larger frequencies of driv-
ing [11]. In the present context, we emphasize that the model
specified by Eq. (4) is not meant as a full description of the
data, but only as a basis for comparison.

Equation (4) is given in a nondimensional form obtained
by choosing L as a length scale and 1/w, as a time scale,
where ®, is some typical imposed frequency (we use w,
=27f,, f{,=30 Hz). We take the diffusion D and the speed of
propagation, c, as constants. Further assuming plane-wave
solution as a zeroth order approximation to more complex
waves that can be expected in DGM [13,14,21] in the form

E()C,Z,t) — Eoelwlelkxelqz, (5)
one obtains the following dispersion relation:

R
mb=="ry

(6)

where X'=(w/c)*~k*>. We first discuss general features of
such a mode in light of the simulation results and note that
the results outlined below apply for a wide range of (con-
stant) ¢’s and D’s. The following predictions are easily veri-
fied:

(i) For a fixed frequency of perturbation f, an increase of
k leads to an increase of the dominant wavelength of the
propagating signal, in agreement with Figs. 3 and 4(a).

(ii) Still for a fixed f, an increase of k also leads to larger
Im(g) showing that stronger attenuation is expected for
shorter \’s, in agreement with Figs. 3, 4(a), and 4(b).

(iii) For a fixed k, as f is decreased, one expects longer
emerging wavelengths, in agreement with Fig. 4(c).

q==lqle'”?, |¢*|= X+ (w/D)?,
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We note here that, while the attenuation of a propagating
signal as a function of driving frequency has been considered
before [11,13], we are not aware of any results discussing the
dependence of attenuation on the spatial scales introduced by
the perturbation. One feature of the DEM results which is not
explained well by the model is the fact that Eq. (4) predicts
essentially constant attenuation for larger f’s, while in Fig.
4(d) we see stronger attenuation than, e.g., in Fig. 3, consis-
tent with previous work [11,13]. One explanation for this
difference is that the model predicts shorter emerging wave-
lengths for these high frequencies. These shorter wave-
lengths may become comparable to the particle size, where a
continuum model is not expected to apply.

After finding reasonable agreement between the model,
Eq. (4), and the simulations, we next ask whether the values
of D and ¢ deduced by comparison to the DEM data are in
qualitative agreement with the commonly used ones. For this
purpose, we extract the value of ¢ from Fig. 3 and using the
dispersion relation, Eq. (6), obtain ¢~0.025 and D=0.01.
Similar values of ¢ and D can be extracted from the results
shown in Fig. 4 and from additional simulations using other
values of f and N (not shown), typically with the spread of
obtained values of D larger than the one for ¢. The value of
¢ can now be compared to the speed of sound resulting from
elasticity theory

Cc* = \;'m/(l‘wp)’ (7)

where E,,o0,p are the Young modulus, Poisson ratio, and
density of the material. These material parameters can be
extracted from the DEM force model [16], giving c¢/c*
~0.1, in general agreement with work [12].

An interpretation of D is more complicated. An estimate
based on the particle size and some typical shear rate, such as
average velocity gradient, underestimates significantly the
predicted value of D, suggesting that a different mechanism
is in place. Alternatively, we recall the estimate D=~uv €/3,
where v, is the velocity of energy transport and [ is the
transport mean-free path, measuring the distance traveled be-
fore the direction of propagation is randomized; for further
discussion regarding applicability of this concept to dense
granular materials, see, e.g., [9,11]. Let us assume that
v,=~c*. The value of D predicted by the model then gives €
corresponding to 30—40d. It will be of interest to analyze
whether such a long length scale may be related to the cor-
relation length introduced by the force-chain structure, an
issue which has been a subject of considerable discussion
[11-13,22]. Tt will be also of interest to explore how € (and
therefore D) varies with, e.g., the volume fraction or the
imposed frequency. An additional task will be to analyze the
influence of dimensionality of the system, since it has been
suggested that in three-dimensions (3D) the correlation
length of the force network may be much shorter [11]. We
note in passing that, in the regime considered here, a diffu-
sion model that was successfully applied to a 3D system
driven at high frequencies [11] could not explain the main
features of the DEM results presented in Figs. 3 and 4.
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IV. CONCLUSION

In this work, we have considered response of a dense
granular system to space-time dependent perturbations. This
response turns out to strongly depend on the properties of
perturbations and provides significant insight regarding the
manner in which energy propagates. For the system consid-
ered here, we find that a reasonably good description of en-
ergy propagation can be reached via a simple linear wave
equation with dissipation. This finding is perhaps not surpris-
ing, since it is known that elastic (with respect to spatial
coordinates) models describe well the response of static
granular systems. In this work, we show that similar behav-
ior may be expected in a system exposed to continuous time-
dependent perturbations where some amount of relative mo-
tion of the particles is present.

While we find consistent results between the simulations
and the simple continuum model encouraging, we note that
much more work is needed. Regarding simulations, we have
considered propagation for a given volume fraction, there-
fore not considering explicitly the pressure dependence of
the speed of propagation. For smaller volume fractions
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(closer to the jamming threshold) the nature of the signal
propagation may be modified and it remains to be seen how
the continuum model used here would apply in that case.

Regarding the continuum model itself, although we find
that it describes well many features of the DEM results, bet-
ter understanding of the attenuation properties of the signal is
needed. The degree of agreement with the simulations sug-
gests that for more precise comparisons one may need to
consider frequency-dependent D. The question of coupling
of different spatial and temporal scales needs to be consid-
ered as well.

We hope that probing DGM with both space and time
dependent perturbations, as done here, will be utilized in
future theoretical and particularly experimental efforts to
build a more complete picture regarding stress and energy
transport in dense granular matter.
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