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Overview 
 Examples of some current applications
 General physical and mathematical issues 

related to thin film flows
 Review of flows involving contact lines
 Examples of (mostly) computational results 

involving dynamics of thin films
 Instability development and pattern formation
 Flows on inhomogeneous surfaces
 Issues related to partial wetting

In collaboration with Javier Diez and other members
of the Fluids group at FCEx UNCPBA Tandil: Alejandro
Gonzalez, Roberto Gratton, Juan Gomba



Examples of previous works
 Inclined plane flow

 Troian,  Europhys. Lett. '89
 Lopez etal JFM '96
 Eres etal PoF '00
 Perazzo & Gratton PoF '04

 Spinning drops
 Spaid & Homsy, J. Non-Newt. Fluid Mech '94

 Thermally driven flows
 Cazabat etal, Nature '90
 Sur etal PRL '03

 Flows with surfactants
 Matar & Kumar SIAM J. Appl. Math '04

 Two layer flows
 Thiele et al PRE '04
 Segin etal JFM '05



Numerous applications

 Spin coating
 Photographic films
 Microscopic fluid devices (MEMS, etc.)
 Spraying

 Some examples of recent experiments 
showing dynamics of thin films and drops



Experiments involving electrowetting

 Apply electric field and modify fluid wetting 
properties (contact angle change)

F. Mugele's group at Twente University



More about electrowetting
C. J. Kim's group at UCLA

R. Fair's group at Duke



Flows that include thermal effects

 Example from industrial world: flow on ex-
tremely clean silicon wavers

  By Y. Gotkis, KLA-Tencor, San Jose CA

 Peculiar droplet(s) ejection from evaporative
mother-drop

 Relevance: numerous processes in semiconduc-
tor industry involving processes on micro- and 
nano scale 

 Flows of alcohols and alcohol-water mixtures



Alcohol-water mixture: formation 
of convection rolls at the fronts



 

  

Octopi-like features detach from 
the fluid front (pure alcohol)



Challenges

 Understand the details of the physics at the 
contact line

 Extend to complex fluids
 Properly account for additional forces (elec-

trowetting, thermal effects, evaporation, ...)
 Bridge the scales: from micro to meso to 

macro
 Compute accurately the flow: multiscale 

problem

Plenty of room for new physics!!!



From Navier-Stokes to a single 
PDE

 Free surface flows are very difficult to ad-
dress due to continuously changing domain 
of interest

 Need to simplify the formulation as much as 
possible 
 Use the fact that the films are thin, fluids are in-

compressible and Newtonian
 Ignore thermal effects and evaporation
 Assume simple models for fluid-solid interaction 



Assumptions

 Fluid is thin and all gradients are small
 Inertial effects can be ignored
 Capillary number is small
 No-slip boundary condition at liquid-solid in-

terface (to be discussed)
 Consider first completely wetting fluids; ex-

tend later to partial wetting



Reduction (1)

∂2 v
∂ z2

Navier – Stokes equations:

u=v , w 

∂u
∂ t
u⋅∇ u=−1


∇ p



∇ 2 ug sin  i−g cos k

use incompressibility

∇⋅u=0

to show that  

w≪∣u∣



Reduction (2)

∇ 2 p=
∂2 v
∂ z2
g sin  i 1

z component

p~− at z=h x , y

x – y components

∂ p
∂ z
=−g cos 2

Integrate (1) twice using

no slip at fluid solid interface

continuity of stresses at 
fluid-air interface 
 

p=−g z−hcos−const.

Use  Laplace – Young condition
to solve (2)  

∣v∣=0 at z=0

∣∂ v
∂ z∣=0 at z=h x , y



Reduction (3)

v=
1
 [∇ 2 g h cos− −g sin  i ][ z2

2
−hz ]

Use mass-conservation 

to obtain

equation for the fluid velocity 

〈v〉=
1
h
∫0

h
v dz

Average over fluid thickness 

∂ v
∂ t
∇⋅h 〈v〉 =0

Approximate curvature of the fluid-air interface 

≈∇ 2 h



Thin film equation

3
∂h
∂ t
∇⋅[h3∇∇ 2 h ]−g cos∇⋅[h3∇ h ]g sin 

∂h
∂ x
=0

capillarity out-of-plane
gravity

in-plane
gravityh: fluid thickness 

  : inclination angle
  : fluid density


   : fluid viscosity
   : surface tension
g : gravity





Fourth order  nonlinear PDE for the fluid height:



Scales
 scale fluid thickness by H: thickness far from the con-

tact line
 in-plane length scale : l 
 velocity scale: U
 time scale: t = l/U
 Capillary number: Ca=

U


 ∂h
∂ t
∇⋅[h3∇∇ 2 h ]−D ∇⋅[h3∇ h ]

∂h
∂ x
=0

D =3Ca1/3 cot 

Non-dimensional equation:



Contact line singularity
 Add precursor film of thickness b
 spreading on a prewetted surface
 introduces new length-scale

Dussan & Davis, JFM '74
de Gennes, RMP '85
Goodwin & Homsy, PoF A '91
Gonzalez etal PRE '04

 Relax no-slip boundary condition

 For the purpose of understanding 
macro-behavior, the models are 
consistent

 For the purpose of computing, 
     precursor model is more efficient

Diez, Kondic, Bertozzi, PRE '01



Linear stability analysis 
(flow down an incline)

 Expand about y-independent solution 
    (trivial traveling wave)

h  x , y , t =h0  x−Vt e t ei q y h1 x 

There is a critical wave
number     below which
the flow is unstable 

Troian, Europhys. Lett. '89
Bertozzi & Brenner PoF '97 

c=2/qc≈8 

qc



Computational methods

 Very demanding problem due to high degree, 
nonlinearity and presence of short scales 
(precursor)

 Efficiency, accuracy and stability are crucial 
even with state-of-the-art computers
 Finite difference methods
 ADI methods 
 Eres etal PoF '00,  Witelski Appl. Num. Math. '03

 Fully implicit methods
 Diez & Kondic PRL '01, PoF '02

 Spectral and pseudospectral methods
 Thiele etal PRE '01 etc



Implemented computational methods
 Implicit time discretization
 Time step: accuracy requirement
 Spatial linearization: Newton method
 Iterative biconjugate gradient solver for lin-

ear problem
 Second order in space and time

 Details: Diez & Kondic, JCP '02

Initial condition: 1D profile modified by harmonic perturbations:

At=0=∑i

N
Ai cosqi y ; Ai∈[−0.1,0 .1]





Pattern formation – vertical plane

 Stable (short) wavelengths disappear for very 
early times (coarsening)

 Emerging wavelengths center about  
    predicted by linear theory
 Occurrence of a range of wavelengths, as in 

experiments
 Formation of finger-like patterns

 =2/q 



Pattern formation – inclined plane

 Longer wavelengths for smaller angles
 Significant modification of emerging patterns: 

transition from fingers to saw-tooth patterns 
 Diez & Kondic, PRL '01

 Good quantitative agreement with experiments
 Johnson etal JFM '99

 Question: do the patterns 
    grow for all times?



Pattern growth

 Perturb the fluid by 
    initial perturbation     
    and record the pattern
   length
 D = 0: linear growth 
    even for long times
 D > 0: growth stops

L0

L t 

Existence of nontrivial traveling wave solutions!!!



Growth saturation

 Relevance: numerous applications in which 
pattern growth is crucial for performance

    (coatings, etc)
 Challenges: perform accurate long time 

simulations using reasonably realistic value 
of precursor film thickness; avoid spurious 
saturation effects due to large precursor 
and/or small computation domain
 See Eres et al.  PoF '00



Bifurcation analysis
 Analyze the influence of domain size and 
    initial perturbation amplitude for

 See Kondic & Diez, Physica D '05 

D≥0



Bifurcation analysis:
results and questions

 Very different behavior for 
 Is

DDcrit∧DDcrit

Dcrit=0?

 

DDcrit
DDcrit

Can traveling wave solutions be found analytically?



Application: 
Coalescence of Sessile Drops

 Example of a problem where calculations 
on nonuniform grids were crucial
 Diez & Kondic, JCP '02

 Applications: coating, spraying
 Follow spreading through `topological' tran-

sition as drops merge



Merge of two drops

 Use symmetry of the 
problem

 Analyze some pecu-
liar flow features

 Discuss front motion 
in comparison to 
single drop spread-
ing



Coalescence: connection to theory
Numerics lets us compare 
to self-similar solutions

Extension to more drops
possible
Diez & Kondic JCP '02



Application: Flow on Patterned 
Surfaces and Substrate Noise

 Idea: modify surface properties in control-
lable manner and analyze how imposed 
surface features modify the flow

 Questions
 Can one force the fluid to follow substrate features?
 What is the interaction between imposed features and 

the natural fluid instability?

 Simple model: perturb precursor film thick-
ness and analyze the flow



Precursor perturbation

What happens as the fluid flow over these 
perturbations?



Result of imposed perturbations



Basic results

 Simulations show that instability could be 
imposed by the precursor perturbations

 The resulting patterns are similar to the 
previously obtained ones
 Universality of the instability mechanism?

 Does the fluid always follow the imposed 
perturbations?
 What is the influence of noise?
 How fast does the information propagate 

through the fluid?



Information propagation

 Simple (approximate) answer follows from 
LSA: v≈* *



Some more numerical experiments



What is numerics telling us?

 Fluid pattern cannot 
developed below linear 
stability limit

 Influence of noise is 
crucial
 More details: Kondic & 

Diez, PRE '02, PoF '04

 Very similar results as 
in experiments where 
fluid wetting properties 
are perturbed
 Troian, Nature '99



Experiments at undergraduate lab 
at NJIT

 Silicon oil on glass: good wetting
 Flow on unperturbed and on perturbed sur-

faces
 Excellent project to convince students that 

math actually works!  (LSA + simple numer-
ics could be compared to rather complex 
experimental results)
 Kondic, SIAM Review '03





Experiments on perturbed substrates







Application: Flow of Partially Wet-
ting Fluids

 Flow of partially wetting fluids requires 
some more care in modeling
 Mostly work by Javier Diez and his collaborators at 

Tandil  (see the poster A227 for interesting experi-
mental results)

 One approach is inclusion of van der Waals 
forces via disjoining pressure model
 Physical concept: include the fact that molecular 

forces in the thin film are different from the bulk fluid
 Model this effect by correcting Laplace-Young 
     condition at the fluid – air interface



Disjoining pressure model

−−−h

h~
1
hn [ hh 

n

− hh 
m ]

h : precursor film thickness 

n, m: model dependent parameters

(e.g., n = 9, m = 3 result from Lennard-Jones potential)



Sliding drops
 Analyze how combination of fluid and flow 

parameters determines the dynamics

More to come: work in progress

Small Sliding Drop

Large Sliding Drop

Two sliding Drops



Next Steps

 Physics
 Electrical effects
 Evaporation
 Thermal conduction
 Complex fluids
 Partial wetting

 Math/computing
 Faster methods
 Parallel computing
 Theoretical methods
 Extension to new 

geometries

 Applications: bridge the gap between `aca-
demic' and `relevant' problems!


