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Overview 
 Examples of some current applications
 General physical and mathematical issues 

related to thin film flows
 Review of flows involving contact lines
 Examples of (mostly) computational results 

involving dynamics of thin films
 Instability development and pattern formation
 Flows on inhomogeneous surfaces
 Issues related to partial wetting

In collaboration with Javier Diez and other members
of the Fluids group at FCEx UNCPBA Tandil: Alejandro
Gonzalez, Roberto Gratton, Juan Gomba



Examples of previous works
 Inclined plane flow

 Troian,  Europhys. Lett. '89
 Lopez etal JFM '96
 Eres etal PoF '00
 Perazzo & Gratton PoF '04

 Spinning drops
 Spaid & Homsy, J. Non-Newt. Fluid Mech '94

 Thermally driven flows
 Cazabat etal, Nature '90
 Sur etal PRL '03

 Flows with surfactants
 Matar & Kumar SIAM J. Appl. Math '04

 Two layer flows
 Thiele et al PRE '04
 Segin etal JFM '05



Numerous applications

 Spin coating
 Photographic films
 Microscopic fluid devices (MEMS, etc.)
 Spraying

 Some examples of recent experiments 
showing dynamics of thin films and drops



Experiments involving electrowetting

 Apply electric field and modify fluid wetting 
properties (contact angle change)

F. Mugele's group at Twente University



More about electrowetting
C. J. Kim's group at UCLA

R. Fair's group at Duke



Flows that include thermal effects

 Example from industrial world: flow on ex-
tremely clean silicon wavers

  By Y. Gotkis, KLA-Tencor, San Jose CA

 Peculiar droplet(s) ejection from evaporative
mother-drop

 Relevance: numerous processes in semiconduc-
tor industry involving processes on micro- and 
nano scale 

 Flows of alcohols and alcohol-water mixtures



Alcohol-water mixture: formation 
of convection rolls at the fronts



 

  

Octopi-like features detach from 
the fluid front (pure alcohol)



Challenges

 Understand the details of the physics at the 
contact line

 Extend to complex fluids
 Properly account for additional forces (elec-

trowetting, thermal effects, evaporation, ...)
 Bridge the scales: from micro to meso to 

macro
 Compute accurately the flow: multiscale 

problem

Plenty of room for new physics!!!



From Navier-Stokes to a single 
PDE

 Free surface flows are very difficult to ad-
dress due to continuously changing domain 
of interest

 Need to simplify the formulation as much as 
possible 
 Use the fact that the films are thin, fluids are in-

compressible and Newtonian
 Ignore thermal effects and evaporation
 Assume simple models for fluid-solid interaction 



Assumptions

 Fluid is thin and all gradients are small
 Inertial effects can be ignored
 Capillary number is small
 No-slip boundary condition at liquid-solid in-

terface (to be discussed)
 Consider first completely wetting fluids; ex-

tend later to partial wetting



Reduction (1)

∂2 v
∂ z2

Navier – Stokes equations:

u=v , w 

∂u
∂ t
u⋅∇ u=−1


∇ p



∇ 2 ug sin  i−g cos k

use incompressibility

∇⋅u=0

to show that  

w≪∣u∣



Reduction (2)

∇ 2 p=
∂2 v
∂ z2
g sin  i 1

z component

p~− at z=h x , y

x – y components

∂ p
∂ z
=−g cos 2

Integrate (1) twice using

no slip at fluid solid interface

continuity of stresses at 
fluid-air interface 
 

p=−g z−hcos−const.

Use  Laplace – Young condition
to solve (2)  

∣v∣=0 at z=0

∣∂ v
∂ z∣=0 at z=h x , y



Reduction (3)

v=
1
 [∇ 2 g h cos− −g sin  i ][ z2

2
−hz ]

Use mass-conservation 

to obtain

equation for the fluid velocity 

〈v〉=
1
h
∫0

h
v dz

Average over fluid thickness 

∂ v
∂ t
∇⋅h 〈v〉 =0

Approximate curvature of the fluid-air interface 

≈∇ 2 h



Thin film equation

3
∂h
∂ t
∇⋅[h3∇∇ 2 h ]−g cos∇⋅[h3∇ h ]g sin 

∂h
∂ x
=0

capillarity out-of-plane
gravity

in-plane
gravityh: fluid thickness 

  : inclination angle
  : fluid density


   : fluid viscosity
   : surface tension
g : gravity





Fourth order  nonlinear PDE for the fluid height:



Scales
 scale fluid thickness by H: thickness far from the con-

tact line
 in-plane length scale : l 
 velocity scale: U
 time scale: t = l/U
 Capillary number: Ca=

U


 ∂h
∂ t
∇⋅[h3∇∇ 2 h ]−D ∇⋅[h3∇ h ]

∂h
∂ x
=0

D =3Ca1/3 cot 

Non-dimensional equation:



Contact line singularity
 Add precursor film of thickness b
 spreading on a prewetted surface
 introduces new length-scale

Dussan & Davis, JFM '74
de Gennes, RMP '85
Goodwin & Homsy, PoF A '91
Gonzalez etal PRE '04

 Relax no-slip boundary condition

 For the purpose of understanding 
macro-behavior, the models are 
consistent

 For the purpose of computing, 
     precursor model is more efficient

Diez, Kondic, Bertozzi, PRE '01



Linear stability analysis 
(flow down an incline)

 Expand about y-independent solution 
    (trivial traveling wave)

h  x , y , t =h0  x−Vt e t ei q y h1 x 

There is a critical wave
number     below which
the flow is unstable 

Troian, Europhys. Lett. '89
Bertozzi & Brenner PoF '97 

c=2/qc≈8 

qc



Computational methods

 Very demanding problem due to high degree, 
nonlinearity and presence of short scales 
(precursor)

 Efficiency, accuracy and stability are crucial 
even with state-of-the-art computers
 Finite difference methods
 ADI methods 
 Eres etal PoF '00,  Witelski Appl. Num. Math. '03

 Fully implicit methods
 Diez & Kondic PRL '01, PoF '02

 Spectral and pseudospectral methods
 Thiele etal PRE '01 etc



Implemented computational methods
 Implicit time discretization
 Time step: accuracy requirement
 Spatial linearization: Newton method
 Iterative biconjugate gradient solver for lin-

ear problem
 Second order in space and time

 Details: Diez & Kondic, JCP '02

Initial condition: 1D profile modified by harmonic perturbations:

At=0=∑i

N
Ai cosqi y ; Ai∈[−0.1,0 .1]





Pattern formation – vertical plane

 Stable (short) wavelengths disappear for very 
early times (coarsening)

 Emerging wavelengths center about  
    predicted by linear theory
 Occurrence of a range of wavelengths, as in 

experiments
 Formation of finger-like patterns

 =2/q 



Pattern formation – inclined plane

 Longer wavelengths for smaller angles
 Significant modification of emerging patterns: 

transition from fingers to saw-tooth patterns 
 Diez & Kondic, PRL '01

 Good quantitative agreement with experiments
 Johnson etal JFM '99

 Question: do the patterns 
    grow for all times?



Pattern growth

 Perturb the fluid by 
    initial perturbation     
    and record the pattern
   length
 D = 0: linear growth 
    even for long times
 D > 0: growth stops

L0

L t 

Existence of nontrivial traveling wave solutions!!!



Growth saturation

 Relevance: numerous applications in which 
pattern growth is crucial for performance

    (coatings, etc)
 Challenges: perform accurate long time 

simulations using reasonably realistic value 
of precursor film thickness; avoid spurious 
saturation effects due to large precursor 
and/or small computation domain
 See Eres et al.  PoF '00



Bifurcation analysis
 Analyze the influence of domain size and 
    initial perturbation amplitude for

 See Kondic & Diez, Physica D '05 

D≥0



Bifurcation analysis:
results and questions

 Very different behavior for 
 Is

DDcrit∧DDcrit

Dcrit=0?

 

DDcrit
DDcrit

Can traveling wave solutions be found analytically?



Application: 
Coalescence of Sessile Drops

 Example of a problem where calculations 
on nonuniform grids were crucial
 Diez & Kondic, JCP '02

 Applications: coating, spraying
 Follow spreading through `topological' tran-

sition as drops merge



Merge of two drops

 Use symmetry of the 
problem

 Analyze some pecu-
liar flow features

 Discuss front motion 
in comparison to 
single drop spread-
ing



Coalescence: connection to theory
Numerics lets us compare 
to self-similar solutions

Extension to more drops
possible
Diez & Kondic JCP '02



Application: Flow on Patterned 
Surfaces and Substrate Noise

 Idea: modify surface properties in control-
lable manner and analyze how imposed 
surface features modify the flow

 Questions
 Can one force the fluid to follow substrate features?
 What is the interaction between imposed features and 

the natural fluid instability?

 Simple model: perturb precursor film thick-
ness and analyze the flow



Precursor perturbation

What happens as the fluid flow over these 
perturbations?



Result of imposed perturbations



Basic results

 Simulations show that instability could be 
imposed by the precursor perturbations

 The resulting patterns are similar to the 
previously obtained ones
 Universality of the instability mechanism?

 Does the fluid always follow the imposed 
perturbations?
 What is the influence of noise?
 How fast does the information propagate 

through the fluid?



Information propagation

 Simple (approximate) answer follows from 
LSA: v≈* *



Some more numerical experiments



What is numerics telling us?

 Fluid pattern cannot 
developed below linear 
stability limit

 Influence of noise is 
crucial
 More details: Kondic & 

Diez, PRE '02, PoF '04

 Very similar results as 
in experiments where 
fluid wetting properties 
are perturbed
 Troian, Nature '99



Experiments at undergraduate lab 
at NJIT

 Silicon oil on glass: good wetting
 Flow on unperturbed and on perturbed sur-

faces
 Excellent project to convince students that 

math actually works!  (LSA + simple numer-
ics could be compared to rather complex 
experimental results)
 Kondic, SIAM Review '03





Experiments on perturbed substrates







Application: Flow of Partially Wet-
ting Fluids

 Flow of partially wetting fluids requires 
some more care in modeling
 Mostly work by Javier Diez and his collaborators at 

Tandil  (see the poster A227 for interesting experi-
mental results)

 One approach is inclusion of van der Waals 
forces via disjoining pressure model
 Physical concept: include the fact that molecular 

forces in the thin film are different from the bulk fluid
 Model this effect by correcting Laplace-Young 
     condition at the fluid – air interface



Disjoining pressure model

−−−h

h~
1
hn [ hh 

n

− hh 
m ]

h : precursor film thickness 

n, m: model dependent parameters

(e.g., n = 9, m = 3 result from Lennard-Jones potential)



Sliding drops
 Analyze how combination of fluid and flow 

parameters determines the dynamics

More to come: work in progress

Small Sliding Drop

Large Sliding Drop

Two sliding Drops



Next Steps

 Physics
 Electrical effects
 Evaporation
 Thermal conduction
 Complex fluids
 Partial wetting

 Math/computing
 Faster methods
 Parallel computing
 Theoretical methods
 Extension to new 

geometries

 Applications: bridge the gap between `aca-
demic' and `relevant' problems!


